[Objective] The aim of the study was to make research on adsorption of Chinese walnut(Juglans mandshurica Maxim.) Shell(CWS) to Hg(Ⅱ) in water.[Method] Shells of Juglans mandshurica Maxim were used as biosorpti...[Objective] The aim of the study was to make research on adsorption of Chinese walnut(Juglans mandshurica Maxim.) Shell(CWS) to Hg(Ⅱ) in water.[Method] Shells of Juglans mandshurica Maxim were used as biosorption to remove Hg(Ⅱ) in water solution to explore the influence to adsorption of Hg(Ⅱ) under different conditions,like pH solution,adsorption time,and Hg(Ⅱ).[Result] The experimental results show that when absorptivity of Hg(Ⅱ) by CWS reached the highest,pH ranged within 5.0-6.0.The adsorptivity decreased as initial Hg(Ⅱ) concentrations increased.Fourier Transform Infrared Spectroscopy(FTIR) spectrum revealed some chemical groups of CWS may affect the adsorption of Hg(Ⅱ),such as hydroxyl groups,methyl groups,aromatic methoxyl groups,unconjugated carbonyl,and typical aromatic ring,etc.Adsorption equation can be concluded considering the biosorption process relationship with Langmuir and Frendrich isotherm.[Conclusion] The study found that CW could be employed as a promising biosorption to remove Hg(Ⅱ) from aqueous environments.展开更多
A novel adsorbent(MTZ-MOFs)was synthesized by a one-step reaction of zinc nitrate hexahydrate and 1-(2-dimethylaminoethyl)-1H-5-mercaptotetrazole to remove mercury from waste water.The results showed that MTZ-MOFs had...A novel adsorbent(MTZ-MOFs)was synthesized by a one-step reaction of zinc nitrate hexahydrate and 1-(2-dimethylaminoethyl)-1H-5-mercaptotetrazole to remove mercury from waste water.The results showed that MTZ-MOFs had excellent selectivity and repeatability for Hg(Ⅱ),the optimum pH was 3.0,the maximum adsorption capacity was 872.8 mg/g,and the process was a spontaneous exothermic reaction.The adsorption behavior was chemisorption,which conformed to the pseudo-second-order kinetic and Freundlich isothermal model.Moreover,the adsorption mechanism showed that the adsorption process mainly depended on ion exchange and chelation,and the synergistic action of S and N atoms played a key role.So,MTZ-MOFs were an efficient adsorbent for mercury ion removal.展开更多
基金Supported by National Water Major Project of China (2008ZX07211-007)~~
文摘[Objective] The aim of the study was to make research on adsorption of Chinese walnut(Juglans mandshurica Maxim.) Shell(CWS) to Hg(Ⅱ) in water.[Method] Shells of Juglans mandshurica Maxim were used as biosorption to remove Hg(Ⅱ) in water solution to explore the influence to adsorption of Hg(Ⅱ) under different conditions,like pH solution,adsorption time,and Hg(Ⅱ).[Result] The experimental results show that when absorptivity of Hg(Ⅱ) by CWS reached the highest,pH ranged within 5.0-6.0.The adsorptivity decreased as initial Hg(Ⅱ) concentrations increased.Fourier Transform Infrared Spectroscopy(FTIR) spectrum revealed some chemical groups of CWS may affect the adsorption of Hg(Ⅱ),such as hydroxyl groups,methyl groups,aromatic methoxyl groups,unconjugated carbonyl,and typical aromatic ring,etc.Adsorption equation can be concluded considering the biosorption process relationship with Langmuir and Frendrich isotherm.[Conclusion] The study found that CW could be employed as a promising biosorption to remove Hg(Ⅱ) from aqueous environments.
基金supported by the Hubei Provincial Department of Education Science and Technology Research Program Young Talent Project,China (No. Q20201102)the National Natural Science Foundation of China (Nos. 51864042, 51804220)
文摘A novel adsorbent(MTZ-MOFs)was synthesized by a one-step reaction of zinc nitrate hexahydrate and 1-(2-dimethylaminoethyl)-1H-5-mercaptotetrazole to remove mercury from waste water.The results showed that MTZ-MOFs had excellent selectivity and repeatability for Hg(Ⅱ),the optimum pH was 3.0,the maximum adsorption capacity was 872.8 mg/g,and the process was a spontaneous exothermic reaction.The adsorption behavior was chemisorption,which conformed to the pseudo-second-order kinetic and Freundlich isothermal model.Moreover,the adsorption mechanism showed that the adsorption process mainly depended on ion exchange and chelation,and the synergistic action of S and N atoms played a key role.So,MTZ-MOFs were an efficient adsorbent for mercury ion removal.