This article discussed the benzoic acid activated carbons which have changed the types and content of acid oxygen-function groups on the surface of activated carbons and their effect on the adsorption for Hg^0 in simu...This article discussed the benzoic acid activated carbons which have changed the types and content of acid oxygen-function groups on the surface of activated carbons and their effect on the adsorption for Hg^0 in simulated flue gas at 140 ℃. These surface acid oxygen function groups were identified by Boehm titration, Fourier transformation infrared spectrum, temperature programmed desorption and X-ray photoelectron spectroscopy. It indicates that the carboxyl, lactone and phenolic were formed when the benzoic acid is loaded on the surface of activated carbons. Among the surface acid oxygen function groups, the carboxyl groups enhance the adsorption capacities of Hg^0 for activated carbons to a greater extent.展开更多
The adsorption of cyanide on the top site of a series of transition metal M(100) (M = Cu, Ag, Au, Ni, Pd, Pt) surfaces via carbon and nitrogen atoms respectively, with the CN axis perpendicular to the surface, has...The adsorption of cyanide on the top site of a series of transition metal M(100) (M = Cu, Ag, Au, Ni, Pd, Pt) surfaces via carbon and nitrogen atoms respectively, with the CN axis perpendicular to the surface, has been studied by means of density functional theory and cluster model. Geometry, adsorption energy and vibrational frequencies have been determined, and the present calculations show that the adsorption of CN through C-end on metal surface is more favorable than that via N-end for the same surface. The vibrational frequencies of CN for C-down configuration on surface are blue-shifted with respect to the free CN, which is contrary to the change of vibrational frequencies when CN is adsorbed by N-down structure. Furthermore, the charge transfer from surface to CN causes the increase of surface work function.展开更多
A process capable of simultaneously oxidizing NO, SO2, and Hg^0 was proposed, using a nigh-voltage and short-duration positive pulsed corona discharge. By focusing on NO, SO2, and Hg^0 oxidation efficiencies, the infl...A process capable of simultaneously oxidizing NO, SO2, and Hg^0 was proposed, using a nigh-voltage and short-duration positive pulsed corona discharge. By focusing on NO, SO2, and Hg^0 oxidation efficiencies, the influences of pulse peak voltage, pulse frequency, initial concentration, electrode number, residence time and water vapor addition were investigated. The results indicate that NO, SO2 and Hg^0 oxidation efficiencies depend primarily on the radicals (OH, HO2, O) and the active species (O3, H2O2, etc.) produced by the pulsed corona discharge. The NO, SO2 and Hg^0 oxidation efficiencies could be improved as pulse peak voltage, pulse frequency, electrode number and residence time increased, but they were reduced with increasing initial concentrations. By adding water vapor, the SO2 oxidation efficiency was improved remarkably, while the NO oxidation efficiency decreased slightly. In our experiments, the simultaneous NO, SO2, and Hg^0 oxidation efficiencies reached to 40%, 98%, and 55% with the initial concentrations 479 mg/m^3, 1040 mg/m^3, and 15.0 μg/m^3, respectively.展开更多
The phosphate adsorption and surface charge characteristics of the tropical and subtropical soils derived from different parent materials in China were determined, and their relations to soil mineralogy were analysed....The phosphate adsorption and surface charge characteristics of the tropical and subtropical soils derived from different parent materials in China were determined, and their relations to soil mineralogy were analysed.The results showed that all soil phosphate adsorption curves were well fitted by Freundlich equation and Langmuir equation. The maximum buffering capacity of P ranged from 66 to 9880 mg kg-1, with an increasing order of purple soil, skeletal soil, red soil, lateritic red soil, yellow soil and latosol; and the highest value was 149 times the lowest value, which indicated great differences among these soils in phosphate adsorption and supplying characteristics. The pHo (zero point of charge) values obtained by salt titrationpotential titration varied from 3.03 to 5.49, and the highest value was found in the latosol derived from basalt whereas the lowest value was found in the purple soil. The correlation analysis indicated that the main minerals responsible for phosphate adsorption in the soils were gibbsite, amorphous iron oxide and kaolinite; and the pHo was mainly controlled by kaolinite, gibbsite and oxides.展开更多
文摘This article discussed the benzoic acid activated carbons which have changed the types and content of acid oxygen-function groups on the surface of activated carbons and their effect on the adsorption for Hg^0 in simulated flue gas at 140 ℃. These surface acid oxygen function groups were identified by Boehm titration, Fourier transformation infrared spectrum, temperature programmed desorption and X-ray photoelectron spectroscopy. It indicates that the carboxyl, lactone and phenolic were formed when the benzoic acid is loaded on the surface of activated carbons. Among the surface acid oxygen function groups, the carboxyl groups enhance the adsorption capacities of Hg^0 for activated carbons to a greater extent.
基金the National Natural Science Foundation of China (20673019, 20773024)the Natural Science Foundation of Fujian Province (U0650012)the New Century Excellent Talents in University and the Initial Funding for Talents of Fuzhou University (2008-XQ-07, XRC-0732)
文摘The adsorption of cyanide on the top site of a series of transition metal M(100) (M = Cu, Ag, Au, Ni, Pd, Pt) surfaces via carbon and nitrogen atoms respectively, with the CN axis perpendicular to the surface, has been studied by means of density functional theory and cluster model. Geometry, adsorption energy and vibrational frequencies have been determined, and the present calculations show that the adsorption of CN through C-end on metal surface is more favorable than that via N-end for the same surface. The vibrational frequencies of CN for C-down configuration on surface are blue-shifted with respect to the free CN, which is contrary to the change of vibrational frequencies when CN is adsorbed by N-down structure. Furthermore, the charge transfer from surface to CN causes the increase of surface work function.
基金supported by the Science and Technology Research of Department of Education of China (No. 0305,03087)
文摘A process capable of simultaneously oxidizing NO, SO2, and Hg^0 was proposed, using a nigh-voltage and short-duration positive pulsed corona discharge. By focusing on NO, SO2, and Hg^0 oxidation efficiencies, the influences of pulse peak voltage, pulse frequency, initial concentration, electrode number, residence time and water vapor addition were investigated. The results indicate that NO, SO2 and Hg^0 oxidation efficiencies depend primarily on the radicals (OH, HO2, O) and the active species (O3, H2O2, etc.) produced by the pulsed corona discharge. The NO, SO2 and Hg^0 oxidation efficiencies could be improved as pulse peak voltage, pulse frequency, electrode number and residence time increased, but they were reduced with increasing initial concentrations. By adding water vapor, the SO2 oxidation efficiency was improved remarkably, while the NO oxidation efficiency decreased slightly. In our experiments, the simultaneous NO, SO2, and Hg^0 oxidation efficiencies reached to 40%, 98%, and 55% with the initial concentrations 479 mg/m^3, 1040 mg/m^3, and 15.0 μg/m^3, respectively.
文摘The phosphate adsorption and surface charge characteristics of the tropical and subtropical soils derived from different parent materials in China were determined, and their relations to soil mineralogy were analysed.The results showed that all soil phosphate adsorption curves were well fitted by Freundlich equation and Langmuir equation. The maximum buffering capacity of P ranged from 66 to 9880 mg kg-1, with an increasing order of purple soil, skeletal soil, red soil, lateritic red soil, yellow soil and latosol; and the highest value was 149 times the lowest value, which indicated great differences among these soils in phosphate adsorption and supplying characteristics. The pHo (zero point of charge) values obtained by salt titrationpotential titration varied from 3.03 to 5.49, and the highest value was found in the latosol derived from basalt whereas the lowest value was found in the purple soil. The correlation analysis indicated that the main minerals responsible for phosphate adsorption in the soils were gibbsite, amorphous iron oxide and kaolinite; and the pHo was mainly controlled by kaolinite, gibbsite and oxides.