Hg Cd Te面阵探测器是空间红外遥感相机的关键部件,随着性能需求的不断提高,器件的规模尺寸不断扩大。Hg Cd Te面阵探测器在常温下与承载板进行装配,但在深冷状态下工作,需要耐受200 K左右的温度波动。由于探测器与承载板的线膨胀系数...Hg Cd Te面阵探测器是空间红外遥感相机的关键部件,随着性能需求的不断提高,器件的规模尺寸不断扩大。Hg Cd Te面阵探测器在常温下与承载板进行装配,但在深冷状态下工作,需要耐受200 K左右的温度波动。由于探测器与承载板的线膨胀系数不匹配,温度波动会引起探测器翘曲变形,变形严重时,将导致探测器损伤。提出基于高导热碳纤维的Hg Cd Te大面阵探测器热适配结构,以碳纤维的轴向高热导率降低结构热阻,以碳纤维的极小抗弯截面模量实现热适配结构两端面间的刚度解耦。相对于探测器与承载板直粘,引入基于高导热碳纤维的热适配结构后,探测器与承载板间的热阻仅增加了约1%,而探测器热失配翘曲变形衰减了99.9%,解决了大面阵探测器与承载板间的热失配翘曲变形损伤问题。并对基于碳纤维的热适配结构制备工艺方案进行了简单介绍。展开更多
A cold preamplifier based on superconducting quantum interference devices(SQUIDs)is currently the preferred readout technology for the low-noise transition edge sensor(TES).In this work,we have designed and fabricated...A cold preamplifier based on superconducting quantum interference devices(SQUIDs)is currently the preferred readout technology for the low-noise transition edge sensor(TES).In this work,we have designed and fabricated a series SQUID array(SSA)amplifier for the TES detector readout circuit.In this SSA amplifier,each SQUID cell is composed of a first-order gradiometer formed using two equally large square washers,and an on-chip low pass filter(LPF)as a radiofrequency(RF)choke has been developed to reduce the Josephson oscillation interference between individual SQUID cells.In addition,a highly symmetric layout has been designed carefully to provide a fully consistent embedded electromagnetic environment and achieve coherent flux operation.The measured results show smooth V-Φcharacteristics and a swing voltage that increases linearly with increasing SQUID cell number N.A white flux noise level as low as 0.28μφ;/Hz;is achieved at 0.1 K,corresponding to a low current noise level of 7 pA/Hz;.We analyze the measured noise contribution at mK-scale temperatures and find that the dominant noise derives from a combination of the SSA intrinsic noise and the equivalent current noise of the room temperature electronics.展开更多
A laser scanning confocal microscope (LSCM) and a field-emission scanning electron microscope (FE- SEM) were used to study the defects in CdMnTe crystals, such as twin boundaries, Te inclusions, and dislocations. ...A laser scanning confocal microscope (LSCM) and a field-emission scanning electron microscope (FE- SEM) were used to study the defects in CdMnTe crystals, such as twin boundaries, Te inclusions, and dislocations. Twin boundaries were usually decorated with Te inclusions, which could induce dislocations. The optical, elec- trical properties and detector performance of CdMnTe crystals with twins and free of twins were compared. The results showed that the wafers with a high density of twins usually had lower average IR transmittance and poorer crystalline quality. Besides, the energy spectra indicated that twin boundaries in a CdMnTe detector had a negative effect on detector performance; the values of both the energy resolution and (μτ)e were nearly half of those for a single crystal detector.展开更多
文摘Hg Cd Te面阵探测器是空间红外遥感相机的关键部件,随着性能需求的不断提高,器件的规模尺寸不断扩大。Hg Cd Te面阵探测器在常温下与承载板进行装配,但在深冷状态下工作,需要耐受200 K左右的温度波动。由于探测器与承载板的线膨胀系数不匹配,温度波动会引起探测器翘曲变形,变形严重时,将导致探测器损伤。提出基于高导热碳纤维的Hg Cd Te大面阵探测器热适配结构,以碳纤维的轴向高热导率降低结构热阻,以碳纤维的极小抗弯截面模量实现热适配结构两端面间的刚度解耦。相对于探测器与承载板直粘,引入基于高导热碳纤维的热适配结构后,探测器与承载板间的热阻仅增加了约1%,而探测器热失配翘曲变形衰减了99.9%,解决了大面阵探测器与承载板间的热失配翘曲变形损伤问题。并对基于碳纤维的热适配结构制备工艺方案进行了简单介绍。
基金supported by the National Key Research and Development Program of China(Grant No.2017YFA0304003)。
文摘A cold preamplifier based on superconducting quantum interference devices(SQUIDs)is currently the preferred readout technology for the low-noise transition edge sensor(TES).In this work,we have designed and fabricated a series SQUID array(SSA)amplifier for the TES detector readout circuit.In this SSA amplifier,each SQUID cell is composed of a first-order gradiometer formed using two equally large square washers,and an on-chip low pass filter(LPF)as a radiofrequency(RF)choke has been developed to reduce the Josephson oscillation interference between individual SQUID cells.In addition,a highly symmetric layout has been designed carefully to provide a fully consistent embedded electromagnetic environment and achieve coherent flux operation.The measured results show smooth V-Φcharacteristics and a swing voltage that increases linearly with increasing SQUID cell number N.A white flux noise level as low as 0.28μφ;/Hz;is achieved at 0.1 K,corresponding to a low current noise level of 7 pA/Hz;.We analyze the measured noise contribution at mK-scale temperatures and find that the dominant noise derives from a combination of the SSA intrinsic noise and the equivalent current noise of the room temperature electronics.
文摘采用改进的垂直布里奇曼生长法生长Cd Zn Te(CZT)单晶,并在晶体生长后期采取长时间的原位恒温退火.采用红外透射显微镜、I-V特性曲线以及多道能谱仪测试经过原位退火后的晶体内部Te夹杂相分布、电阻率大小以及能谱响应.结果表明,原位退火可以大幅降低CZT晶体内部大尺寸Te夹杂相的密度,晶体内绝大部分的Te夹杂都集中在5μm以内.此外,原位退火后的晶体电阻率从4.54×108Ω·cm上升至3.73×1010Ω·cm.原位退火后的CZT晶体对241Am@59.5 ke Vγ射线表现出了良好的能量分辨率,为7.29%.
基金Project supported by the National Natural Science Foundations of China(Nos.50902113,50902114,61274081)the National Basic Research Program of China(No.2011CB610406)+2 种基金the 111 Project of China(No.B08040),the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20116102120014)NPU Foundation for Fundamental Research(No.JC20100228)the Research Fund of the State Key Laboratory of Solidification Processing,China(No.SKLSP201012)
文摘A laser scanning confocal microscope (LSCM) and a field-emission scanning electron microscope (FE- SEM) were used to study the defects in CdMnTe crystals, such as twin boundaries, Te inclusions, and dislocations. Twin boundaries were usually decorated with Te inclusions, which could induce dislocations. The optical, elec- trical properties and detector performance of CdMnTe crystals with twins and free of twins were compared. The results showed that the wafers with a high density of twins usually had lower average IR transmittance and poorer crystalline quality. Besides, the energy spectra indicated that twin boundaries in a CdMnTe detector had a negative effect on detector performance; the values of both the energy resolution and (μτ)e were nearly half of those for a single crystal detector.