HgCdTe材料的表面缺陷是造成探测器性能下降的主要原因之一。采用聚焦离子束(Focused Ion Beam,FIB)、扫描电子显微镜(Scanning Electron Microscope,SEM)和能量色散X射线光谱仪(Energy Dispersive X-ray Spectrometer,EDX)研究了碲锌镉...HgCdTe材料的表面缺陷是造成探测器性能下降的主要原因之一。采用聚焦离子束(Focused Ion Beam,FIB)、扫描电子显微镜(Scanning Electron Microscope,SEM)和能量色散X射线光谱仪(Energy Dispersive X-ray Spectrometer,EDX)研究了碲锌镉(CdZnTe)基HgCdTe外延层的表面缺陷。通过分析不同类型缺陷形成的原因,确定缺陷起源于HgCdTe材料生长过程。缺陷的形状与生长条件关系密切。凹坑及火山口状缺陷与Hg缺乏/稍高生长温度、分子束源坩埚中材料形状变化造成的不稳定束流有关。金刚石状缺陷和火山口状/金刚石状复合缺陷的产生与Hg/Te高束流比、低生长温度相关。在5 cm×5 cm大小的CdZnTe(211)B衬底表面上生长出了组分为0.216、厚度约为6.06~7μm的高质量HgCdTe外延层。同时还建立了缺陷类型与HgCdTe薄膜生长工艺的关系。该研究对于制备高质量HgCdTe/CdZnTe外延层具有参考意义。展开更多
采用分子束外延(Molecular Beam Epitaxy,MBE)法制备了高质量的npn型中波/中波双色HgCdTe材料。利用傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,FTIR)、二次离子质谱(Secondary Ion Mass Spectroscopy,SIMS)、X射...采用分子束外延(Molecular Beam Epitaxy,MBE)法制备了高质量的npn型中波/中波双色HgCdTe材料。利用傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,FTIR)、二次离子质谱(Secondary Ion Mass Spectroscopy,SIMS)、X射线双晶衍射仪(X-Ray double-crystal Diffractometer,XRD)分别测试了材料组分、厚度、元素分布和平均半峰宽等参数。结果表明,材料底部n型吸收层的碲镉汞组分为0.318,厚度为7.15 m;p型层的组分为0.392,厚度为2.47 m;顶部n型吸收层的组分为0.292,厚度为4.71 m。As掺杂浓度约为3×10^(18)cm^(-3),In掺杂浓度为4×10^(15)cm^(-3),平均半峰宽约为95 arcsec,表明该材料具有良好的质量。利用聚焦离子束(Focused Ion Beam,FIB)、扫描电子显微镜(Scanning Electron Microscope,SEM)、X射线能谱仪(Energy-Dispersive X-ray spectrometer,EDX)测试表征了HgCdTe外延材料表面缺陷的形貌,确认缺陷主要受生长温度和Hg/Te束流比等生长参数的影响。展开更多
文摘HgCdTe材料的表面缺陷是造成探测器性能下降的主要原因之一。采用聚焦离子束(Focused Ion Beam,FIB)、扫描电子显微镜(Scanning Electron Microscope,SEM)和能量色散X射线光谱仪(Energy Dispersive X-ray Spectrometer,EDX)研究了碲锌镉(CdZnTe)基HgCdTe外延层的表面缺陷。通过分析不同类型缺陷形成的原因,确定缺陷起源于HgCdTe材料生长过程。缺陷的形状与生长条件关系密切。凹坑及火山口状缺陷与Hg缺乏/稍高生长温度、分子束源坩埚中材料形状变化造成的不稳定束流有关。金刚石状缺陷和火山口状/金刚石状复合缺陷的产生与Hg/Te高束流比、低生长温度相关。在5 cm×5 cm大小的CdZnTe(211)B衬底表面上生长出了组分为0.216、厚度约为6.06~7μm的高质量HgCdTe外延层。同时还建立了缺陷类型与HgCdTe薄膜生长工艺的关系。该研究对于制备高质量HgCdTe/CdZnTe外延层具有参考意义。