期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
scHi-CSim:a flexible simulator that generates high-fidelity single-cell Hi-C data for benchmarking
1
作者 Shichen Fan Dachang Dang +3 位作者 Yusen Ye Shao-Wu Zhang Lin Gao Shihua Zhang 《Journal of Molecular Cell Biology》 SCIE CAS CSCD 2023年第1期27-40,共14页
Single-cell Hi-C technology provides an unprecedented opportunity to reveal chromatin structure in individual cells.However,high sequencing cost impedes the generation of biological Hi-C data with high sequencing dept... Single-cell Hi-C technology provides an unprecedented opportunity to reveal chromatin structure in individual cells.However,high sequencing cost impedes the generation of biological Hi-C data with high sequencing depths and multiple replicates for downstream analysis.Here,we developed a single-cell Hi-C simulator(scHi-CSim)that generates high-fidelity data for benchmarking.scHi-CSim merges neighboring cells to overcome the sparseness of data,samples interactions in distance-stratified chromosomes to maintain the heterogeneity of single cells,and estimates the empirical distribution of restriction fragments to generate simulated data.We demonstrated that scHi-CSim can generate high-fidelity data by comparing the performance of single-cell clustering and detection of chromosomal high-order structures with raw data.Furthermore,scHi-CSim is flexible to change sequencing depth and the number of simulated replicates.We showed that increasing sequencing depth could improve the accuracy of detecting topologically associating domains.We also used scHi-CSim to generate a series of simulated datasets with different sequencing depths to benchmark scHi-C clustering methods. 展开更多
关键词 single-cell hi-c data SIMULATOR high-fidelity single-cell hi-c clustering distance-stratified sampling BENCHMARKING
原文传递
GITAR: An Open Source Tool for Analysis and Visualization of Hi-C Data 被引量:1
2
作者 Riccardo Calandrelli Qiuyang Wu +1 位作者 Jihong Guan Sheng Zhong 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2018年第5期365-372,共8页
Interactions between chromatin segments play a large role in functional genomic assays and developments in genomic interaction detection methods have shown interacting topological domains within the genome. Among thes... Interactions between chromatin segments play a large role in functional genomic assays and developments in genomic interaction detection methods have shown interacting topological domains within the genome. Among these methods, Hi-C plays a key role. Here, we present the Genome Interaction Tools and Resources(GITAR), a software to perform a comprehensive Hi-C data analysis, including data preprocessing, normalization, and visualization, as well as analysis of topologically-associated domains(TADs). GITAR is composed of two main modules:(1)HiCtool, a Python library to process and visualize Hi-C data, including TAD analysis; and(2)processed data library, a large collection of human and mouse datasets processed using HiCtool.HiCtool leads the user step-by-step through a pipeline, which goes from the raw Hi-C data to the computation, visualization, and optimized storage of intra-chromosomal contact matrices and TAD coordinates. A large collection of standardized processed data allows the users to compare different datasets in a consistent way, while saving time to obtain data for visualization or additional analyses. More importantly, GITAR enables users without any programming or bioinformatic expertise to work with Hi-C data. GITAR is publicly available at http://genomegitar.org as an open-source software. 展开更多
关键词 Chromatin interaction Pipeline hi-c data normalization Topologically-associated domain Processed hi-c data library
原文传递
Computational tools for Hi-C data analysis 被引量:1
3
作者 Zhijun Han Gang Wei 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2017年第3期215-225,共11页
Background: In eukaryotic genome, chromatin is not randomly distributed in cell nuclei, but instead is organized into higher-order structures. Emerging evidence indicates that these higher-order chromatin structures ... Background: In eukaryotic genome, chromatin is not randomly distributed in cell nuclei, but instead is organized into higher-order structures. Emerging evidence indicates that these higher-order chromatin structures play important roles in regulating genome functions such as transcription and DNA replication. With the advancement in 3C (chromosome conformation capture) based technologies, Hi-C has been widely used to investigate genome-wide long- range chromatin interactions during cellular differentiation and oncogenesis. Since the first publication of Hi-C assay in 2009, lots of bioinformatic tools have been implemented for processing Hi-C data from mapping raw reads to normalizing contact matrix and high interpretation, either providing a whole workflow pipeline or focusing on a particular process. Results: This article reviews the general Hi-C data processing workflow and the currently popular Hi-C data processing tools. We highlight on how these tools are used for a full interpretation of Hi-C results. Conclusions: Hi-C assay is a powerful tool to investigate the higher-order chromatin structure. Continued development of novel methods for Hi-C data analysis will be necessary for better understanding the regulatory function of genome organization. 展开更多
关键词 3D genome structure hi-c data processing tool chromatin interactions
原文传递
基于Hi-c数据的酵母染色体三维结构重构
4
作者 丰继华 牟锦 郭亚茹 《生物信息学》 2019年第3期182-188,共7页
通过染色体交互频率数据(Hi-c)来预测染色体三维空间结构是近年表观遗传研究热点。研究表明染色体三维空间结构在生物基因表达、调控等方面起到重要作用,对其进行三维重构是研究细胞代谢过程的基本途径。针对酵母Hi-c数据在不同染色体... 通过染色体交互频率数据(Hi-c)来预测染色体三维空间结构是近年表观遗传研究热点。研究表明染色体三维空间结构在生物基因表达、调控等方面起到重要作用,对其进行三维重构是研究细胞代谢过程的基本途径。针对酵母Hi-c数据在不同染色体所呈现出的统计特征,拟合出每条染色体交互频率数据分布的数学模型,然后利用梯度上升迭代算法预测并重构其三维结构,并给出模型评估指标。实验结果表明,模型具有较高可重复性和预测精确度。 展开更多
关键词 hi-c数据 三维结构 梯度上升算法
下载PDF
染色体三维结构的预测方法研究 被引量:1
5
作者 牟锦 郭亚茹 +1 位作者 黄月月 刘珂 《科技创新与应用》 2018年第29期4-6,共3页
目前基因组学领域中染色体三维结构重建是热点研究问题。已有相关文献表明,基因组的DNA突变、复制、胚胎的发育和转录长链非编码RNA的传播等跟染色质的三维结构有着密切的关联。Hi-C实验提供基因组位点之间的接触频率的全基因组图谱,推... 目前基因组学领域中染色体三维结构重建是热点研究问题。已有相关文献表明,基因组的DNA突变、复制、胚胎的发育和转录长链非编码RNA的传播等跟染色质的三维结构有着密切的关联。Hi-C实验提供基因组位点之间的接触频率的全基因组图谱,推测反映其染色体的平均空间组织。文中通过在Hi-C数据基础上对染色体三维结构重建的相关文献进行分析,总结了目前重建染色体三维空间结构的经典算法原理和性能,以期能更深入地研究染色体三维结构重建算法,并系统的掌握三维染色体空间结构预测算法的发展方向。 展开更多
关键词 染色体三维结构重建 hi-c数据集 算法分析
下载PDF
单细胞Hi-C数据分析及应用研究进展
6
作者 龚海燕 麻付强(综述) 张晓彤(审校) 《生物医学工程学杂志》 EI CAS 北大核心 2023年第5期1033-1039,共7页
染色质三维基因组结构在细胞功能和基因调控中起着关键作用。单细胞Hi-C技术可以在细胞水平上捕获基因组结构信息,这为研究不同细胞类型之间基因组结构的变化提供了机会。最近,针对单细胞HiC数据分析出现了一些很好的计算分析方法。本... 染色质三维基因组结构在细胞功能和基因调控中起着关键作用。单细胞Hi-C技术可以在细胞水平上捕获基因组结构信息,这为研究不同细胞类型之间基因组结构的变化提供了机会。最近,针对单细胞HiC数据分析出现了一些很好的计算分析方法。本文首先对可用的单细胞Hi-C数据分析方法进行综述,包括单细胞Hi-C数据的预处理方法、基于单细胞Hi-C数据的多尺度结构识别方法、基于单细胞Hi-C数据集的类bulk HiC接触矩阵生成方法、伪时间序列分析和细胞分类研究;然后阐述了单细胞Hi-C数据在细胞分化、结构变异的应用研究;最后展望了基于单细胞Hi-C数据的未来发展前景。 展开更多
关键词 单细胞hi-c 数据分析 插补 细胞分类 多尺度结构
原文传递
基于Hi-C数据的染色体三维分析计算方法
7
作者 黄月月 丰继华 +2 位作者 刘珂 牟锦 郭亚茹 《基因组学与应用生物学》 CAS CSCD 北大核心 2020年第4期1588-1594,共7页
真核生物的染色质在细胞核中高度折叠且有序排列,这种三维结构对基因转录和DNA复制等细胞功能发挥至关重要。近年来Hi-C数据的涌现,使得研究染色质三维交互作用及其空间结构成为了可能。自2009年Hi-C被开发以来,已经出现了许多用于处理H... 真核生物的染色质在细胞核中高度折叠且有序排列,这种三维结构对基因转录和DNA复制等细胞功能发挥至关重要。近年来Hi-C数据的涌现,使得研究染色质三维交互作用及其空间结构成为了可能。自2009年Hi-C被开发以来,已经出现了许多用于处理Hi-C数据的生物信息学工具,从原始序列比对到接触矩阵的可视化,均提供了系统的Hi-C数据处理过程或解决某一个特定问题的方法。本研究全面介绍了传统的Hi-C数据处理工作流程,以及近十年来新兴的Hi-C数据处理工具以及其未来发展方向。 展开更多
关键词 hi-c数据 染色体三维分析 染色质相互作用
原文传递
Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome 被引量:4
8
作者 Zhuoya Gu Ke Jin +7 位作者 M. James C. Crabbe Yang Zhang Xiaolin Liu Yanyan Huang Mengyi Hua Peng Nan Zhaolei Zhang Yang Zhong 《Protein & Cell》 SCIE CAS CSCD 2016年第4期250-266,共17页
Transposable elements (TEs) have no longer been totally considered as "junk DNA" for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important a... Transposable elements (TEs) have no longer been totally considered as "junk DNA" for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Tech- nologies based on 3C (chromosome conformation capture) have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r= 0.9, P〈 2.2 × 10^16; IMRg0 fibroblasts: r= 0.94, P 〈 2.2 ×10^16) and also have asignificant positive correlation with some remote functional DNA elements like enhancers and promoters (Enhancer: hESC: r= 0.997, P= 2.3× 10^-4; IMR90: r- 0.934, P= 2 × 10^-2; Promoter: hESC: r= 0.995, P= 3.8 × 10^-4; IMR90: r= 0.996, P = 3.2 × 10^-4). Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue-specific genes. 展开更多
关键词 chromatin interaction alternativeparameter of hi-c data open chromatin methylationpotential
原文传递
基于染色体三维结构共调控域基因功的分析
9
作者 黄月月 丰继华 +2 位作者 刘珂 牟锦 郭亚茹 《基因组学与应用生物学》 CAS CSCD 北大核心 2020年第11期5067-5074,共8页
真核生物的染色质在细胞核中高度折叠且有序排列,这种三维结构对基因的转录、调控和表达等细胞进程具有重要的生物学意义。本研究基于酵母染色体三维结构模型,用3σ准则筛选高分辨率Hi-C(highthroughput chromosome conformation captur... 真核生物的染色质在细胞核中高度折叠且有序排列,这种三维结构对基因的转录、调控和表达等细胞进程具有重要的生物学意义。本研究基于酵母染色体三维结构模型,用3σ准则筛选高分辨率Hi-C(highthroughput chromosome conformation capture,Hi-C)数据,对潜在的共调控区域进行搜索定位,并用简单的统计学方法分析了核小体占位率、组蛋白修饰、蛋白质置换水平、基因富集等影响因子在共调控区域TSS附近的分布特征,进而对共调控域基因功能与染色体结构之间的关系进行研究。结果发现,以上影响因子在28个共调控区域中具有相似的分布特征和基因功能信息。由此推测,这些"共性"基因可能协同参与了基因调控,并驱动形成了染色体特定空间折叠结构。 展开更多
关键词 hi-c数据 染色体三维结构 共调控区域 基因功能
原文传递
染色体三维结构重建方法研究
10
作者 牟锦 丰继华 +2 位作者 郭亚茹 刘珂 黄月月 《基因组学与应用生物学》 CAS CSCD 北大核心 2020年第2期718-725,共8页
染色体三维结构重构问题是近年生物领域中基因组学的热点研究问题,是以二维交互频率数据为基础来预测其三维空间结构。最新相关实验表明染色质的三维空间结构对于基因表达、调控等方面都具有重要意义。而Hi-c数据能利用染色质交互信息... 染色体三维结构重构问题是近年生物领域中基因组学的热点研究问题,是以二维交互频率数据为基础来预测其三维空间结构。最新相关实验表明染色质的三维空间结构对于基因表达、调控等方面都具有重要意义。而Hi-c数据能利用染色质交互信息形成二维接触矩阵重构出染色体三维结构。本综述以染色体三维结构重建方法为研究对象,通过对染色体三维结构重建方法进行比较分析,综述了目前基于Hi-c数据在染色体三维结构重建中的经典方法,系统介绍了染色体三维结构重建技术的发展脉络,以促进染色体三维结构重建的进一步研究。 展开更多
关键词 染色体三维结构重建 hi-c数据 文献综述
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部