期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
应用U-HRNet+SoftTripleLoss的HiFi-Net伪造图像检测技术研究
1
作者
宋家骏
刘桂雄
+1 位作者
黄家曦
张国才
《中国测试》
CAS
北大核心
2023年第9期37-45,共9页
伪造图像若被不当利用会带来严重负面影响,不同伪造图像生成方法导致伪造属性差异,使得研究统一图像伪造检测、定位方法具有很大挑战性。该文提出一种应用U-HRNet+SoftTripleLoss的HiFi-Net伪造图像检测方法,首先采用U-HRNet替代HiFi-Ne...
伪造图像若被不当利用会带来严重负面影响,不同伪造图像生成方法导致伪造属性差异,使得研究统一图像伪造检测、定位方法具有很大挑战性。该文提出一种应用U-HRNet+SoftTripleLoss的HiFi-Net伪造图像检测方法,首先采用U-HRNet替代HiFi-Net特征提取网络,其网络结构促进学习图像深层特征以获取更高级的语义信息,增加多个阶段、融合通道以改善高分辨率特征;其次引入SoftTripleLoss模块,学习无约束采样的伪造属性特征嵌入表示以改善特征嵌入分布,从而更好地区分细粒度伪造属性,进而提高细粒度伪造图像分类准确率。实验表明,使用上述技术构建的检测模型像素级别总体评价指标AUC、F1分别为0.9928、0.9760,较原文献模型提高0.0025、0.0082;图像级别总体评价指标细粒度属性分类准确率Acc达98.05%,较原文献模型提高1.23%。
展开更多
关键词
伪造图像
伪造属性分类
hifi-net
U-HRNet
SoftTripleLoss
下载PDF
职称材料
题名
应用U-HRNet+SoftTripleLoss的HiFi-Net伪造图像检测技术研究
1
作者
宋家骏
刘桂雄
黄家曦
张国才
机构
华南理工大学机械与汽车工程学院
出处
《中国测试》
CAS
北大核心
2023年第9期37-45,共9页
基金
广东省重点领域研发计划项目(2019B010154003)。
文摘
伪造图像若被不当利用会带来严重负面影响,不同伪造图像生成方法导致伪造属性差异,使得研究统一图像伪造检测、定位方法具有很大挑战性。该文提出一种应用U-HRNet+SoftTripleLoss的HiFi-Net伪造图像检测方法,首先采用U-HRNet替代HiFi-Net特征提取网络,其网络结构促进学习图像深层特征以获取更高级的语义信息,增加多个阶段、融合通道以改善高分辨率特征;其次引入SoftTripleLoss模块,学习无约束采样的伪造属性特征嵌入表示以改善特征嵌入分布,从而更好地区分细粒度伪造属性,进而提高细粒度伪造图像分类准确率。实验表明,使用上述技术构建的检测模型像素级别总体评价指标AUC、F1分别为0.9928、0.9760,较原文献模型提高0.0025、0.0082;图像级别总体评价指标细粒度属性分类准确率Acc达98.05%,较原文献模型提高1.23%。
关键词
伪造图像
伪造属性分类
hifi-net
U-HRNet
SoftTripleLoss
Keywords
forged image
forged attribute classification
hifi-net
U-HRNet
SoftTripleLoss
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
应用U-HRNet+SoftTripleLoss的HiFi-Net伪造图像检测技术研究
宋家骏
刘桂雄
黄家曦
张国才
《中国测试》
CAS
北大核心
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部