传统直流磁控溅射(DC Magnetron Sputtering,DCMS)沉积金属薄膜时离化率较低,随着薄膜科学技术以及市场对薄膜材料质量的需求提高,对材料沉积时的离化率要求也更加高。高功率脉冲磁控溅射(High Power Impulse Magnetron Sputtering,HiPI...传统直流磁控溅射(DC Magnetron Sputtering,DCMS)沉积金属薄膜时离化率较低,随着薄膜科学技术以及市场对薄膜材料质量的需求提高,对材料沉积时的离化率要求也更加高。高功率脉冲磁控溅射(High Power Impulse Magnetron Sputtering,HiPIMS)是一项能在沉积时提供高电离率的技术。文章采用HiPIMS技术制备铂薄膜,并比较了HiPIMS不同脉宽和DCMS技术下沉积的铂薄膜的微观结构以及电学性能,然后在不同温度下退火处理进行比较分析。使用扫描电子显微镜(Scanning Electron Microscopy,SEM)、X射线衍射(X-Ray Diffraction,XRD)和油浴测试对铂薄膜的表截面形貌、晶体生长取向和电阻温度系数(Temperature Coefficient of Resistance,TCR)进行表征与测试。通过HiPIMS方法制备的铂薄膜退火后薄膜更加均匀、致密,缺陷更少,并且将150μs脉宽下HiPIMS沉积的铂薄膜进行1150℃的退火后,测得的TCR最大,TCR值达到-3.872×10^(-3)℃。展开更多
In this study,the influence of substrate temperature on properties of Al-N co-doped p-type ZnO films is explored.Benefitting from the high ionization rate in high-power impulsed magnetron sputtering,the concentration ...In this study,the influence of substrate temperature on properties of Al-N co-doped p-type ZnO films is explored.Benefitting from the high ionization rate in high-power impulsed magnetron sputtering,the concentration of ionized nitrogen N+and ionized zinc Zn+were increased,which promoted the formation of ZnO films and lowered the necessary substrate temperature.After optimization,a co-doped p-type ZnO thin film with a resistivity lower than 0.35Ωcm and a hole concentration higher than 5.34×10^(18)cm^(-3)is grown at 280°C.X-ray diffraction results confirm that Al-N co-doping does not destruct the ZnO wurtzite structure.X-ray photoelectron spectroscopy demonstrates that the presence of Al promotes the formation of acceptor(No)defects in ZnO films,and ensures the role of Al in stabilizing p-type ZnO.展开更多
TiN coatings were prepared by the novel dual-stage high power impulse magnetron sputtering(HIPIMS)technique under different deposition time conditions,and the effects of microstructure and stress state at different co...TiN coatings were prepared by the novel dual-stage high power impulse magnetron sputtering(HIPIMS)technique under different deposition time conditions,and the effects of microstructure and stress state at different coating growth stages on the mechanical,tribological,and corrosion resistance performance of the coatings were analyzed.Results show that with the prolongation of deposition time from 30 min to 120 min,the surface structure of TiN coating exhibits a round cell structure with tightly doped small and large particles,maintaining the atomic stacking thickening mechanism of deposition-crystallization-growth.When the deposition time increases from 90 min to 120 min,the coating thickness increases from 3884 nm to 4456 nm,and the stress state of coating undergoes the compression-tension transition.When the deposition time is 90 min,TiN coating structure is dense and suffers relatively small compressive stress of−0.54 GPa.The coating has high hardness and elastic modulus,which are 27.5 and 340.2 GPa,respectively.Meanwhile,good tribological properties(average friction coefficient of 0.52,minimum wear rate of 1.68×10^(−4)g/s)and fine corrosion resistance properties(minimum corrosion current density of 1.0632×10^(−8)A·cm^(−2),minimum corrosion rate of 5.5226×10^(−5)mm·A^(−1))can also be obtained for the coatings.展开更多
TiN coatings were deposited using a hybrid home-made high power impulse magnetron sputtering(HIPIMS)technique at room temperature.The effects of substrate negative bias voltage on the deposition rate,composition,cryst...TiN coatings were deposited using a hybrid home-made high power impulse magnetron sputtering(HIPIMS)technique at room temperature.The effects of substrate negative bias voltage on the deposition rate,composition,crystal structure,surface morphology,microstructure and mechanical properties were investigated.The results revealed that with the increase in bias voltage from-50 to-400 V,TiN coatings exhibited a trend of densification and the crystal structure gradually evolved from(111) orientation to(200)orientation.The growth rate decreased from about 12.2 nm to 7.8 nm per minute with the coating densification.When the bias voltage was-300 V,the minimum surface roughness value of 10.1 nm was obtained,and the hardness and Young’s modulus of TiN coatings reached the maximum value of 17.4 GPa and 263.8 GPa,respectively.Meanwhile,the highest adhesion of 59 N was obtained between coating and substrate.展开更多
The Cr–Si–N coatings were prepared by combining system of high-power impulse magnetron sputtering and pulsed DC magnetron sputtering. The Si content in the coating was adjusted by changing the sputtering power of th...The Cr–Si–N coatings were prepared by combining system of high-power impulse magnetron sputtering and pulsed DC magnetron sputtering. The Si content in the coating was adjusted by changing the sputtering power of the Si target.By virtue of electron-probe microanalysis, X-ray diffraction analysis and scanning electron microscopy, the influence of the Si content on the coating composition, phase constituents, deposition rate, surface morphology and microstructure was investigated systematically. In addition, the change rules of micro-hardness, internal stress, adhesion, friction coefficient and wear rate with increasing Si content were also obtained. In this work, the precipitation of silicon in the coating was found.With increasing Si content, the coating microstructure gradually evolved from continuous columnar to discontinuous columnar and quasi-equiaxed crystals; accordingly, the coating inner stress first declined sharply and then kept almost constant. Both the coating hardness and the friction coefficient have the same change tendency with the increase of the Si content, namely increasing at first and then decreasing. The Cr–Si–N coating presented the highest hardness and average friction coefficient for an Si content of about 9.7 at.%, but the wear resistance decreased slightly due to the high brittleness.The above phenomenon was attributed to a microstructural evolution of the Cr–Si–N coatings induced by the silicon addition.展开更多
文摘传统直流磁控溅射(DC Magnetron Sputtering,DCMS)沉积金属薄膜时离化率较低,随着薄膜科学技术以及市场对薄膜材料质量的需求提高,对材料沉积时的离化率要求也更加高。高功率脉冲磁控溅射(High Power Impulse Magnetron Sputtering,HiPIMS)是一项能在沉积时提供高电离率的技术。文章采用HiPIMS技术制备铂薄膜,并比较了HiPIMS不同脉宽和DCMS技术下沉积的铂薄膜的微观结构以及电学性能,然后在不同温度下退火处理进行比较分析。使用扫描电子显微镜(Scanning Electron Microscopy,SEM)、X射线衍射(X-Ray Diffraction,XRD)和油浴测试对铂薄膜的表截面形貌、晶体生长取向和电阻温度系数(Temperature Coefficient of Resistance,TCR)进行表征与测试。通过HiPIMS方法制备的铂薄膜退火后薄膜更加均匀、致密,缺陷更少,并且将150μs脉宽下HiPIMS沉积的铂薄膜进行1150℃的退火后,测得的TCR最大,TCR值达到-3.872×10^(-3)℃。
基金supported by National Natural Science Foundation of China(Nos.11875090,12075032,11775028,11875088,11974048)Beijing Municipal National Science Foundation(Nos.1192008,KZ202010015022)BIGC(Nos.Ea201901,Ee202001)。
文摘In this study,the influence of substrate temperature on properties of Al-N co-doped p-type ZnO films is explored.Benefitting from the high ionization rate in high-power impulsed magnetron sputtering,the concentration of ionized nitrogen N+and ionized zinc Zn+were increased,which promoted the formation of ZnO films and lowered the necessary substrate temperature.After optimization,a co-doped p-type ZnO thin film with a resistivity lower than 0.35Ωcm and a hole concentration higher than 5.34×10^(18)cm^(-3)is grown at 280°C.X-ray diffraction results confirm that Al-N co-doping does not destruct the ZnO wurtzite structure.X-ray photoelectron spectroscopy demonstrates that the presence of Al promotes the formation of acceptor(No)defects in ZnO films,and ensures the role of Al in stabilizing p-type ZnO.
基金Xi'an Science and Technology Plan Project(23GXFW0055)Shaanxi Provincial Natural Science Basic Research Program Project(2024JC-YBQN-0525)National Natural Science Foundation of China(52001251)。
文摘TiN coatings were prepared by the novel dual-stage high power impulse magnetron sputtering(HIPIMS)technique under different deposition time conditions,and the effects of microstructure and stress state at different coating growth stages on the mechanical,tribological,and corrosion resistance performance of the coatings were analyzed.Results show that with the prolongation of deposition time from 30 min to 120 min,the surface structure of TiN coating exhibits a round cell structure with tightly doped small and large particles,maintaining the atomic stacking thickening mechanism of deposition-crystallization-growth.When the deposition time increases from 90 min to 120 min,the coating thickness increases from 3884 nm to 4456 nm,and the stress state of coating undergoes the compression-tension transition.When the deposition time is 90 min,TiN coating structure is dense and suffers relatively small compressive stress of−0.54 GPa.The coating has high hardness and elastic modulus,which are 27.5 and 340.2 GPa,respectively.Meanwhile,good tribological properties(average friction coefficient of 0.52,minimum wear rate of 1.68×10^(−4)g/s)and fine corrosion resistance properties(minimum corrosion current density of 1.0632×10^(−8)A·cm^(−2),minimum corrosion rate of 5.5226×10^(−5)mm·A^(−1))can also be obtained for the coatings.
基金financially supported by the program of National Natural Science Foundation of China (Grant No. 51375475)the Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YZ201326)
文摘TiN coatings were deposited using a hybrid home-made high power impulse magnetron sputtering(HIPIMS)technique at room temperature.The effects of substrate negative bias voltage on the deposition rate,composition,crystal structure,surface morphology,microstructure and mechanical properties were investigated.The results revealed that with the increase in bias voltage from-50 to-400 V,TiN coatings exhibited a trend of densification and the crystal structure gradually evolved from(111) orientation to(200)orientation.The growth rate decreased from about 12.2 nm to 7.8 nm per minute with the coating densification.When the bias voltage was-300 V,the minimum surface roughness value of 10.1 nm was obtained,and the hardness and Young’s modulus of TiN coatings reached the maximum value of 17.4 GPa and 263.8 GPa,respectively.Meanwhile,the highest adhesion of 59 N was obtained between coating and substrate.
基金supported by the Global Frontier Program through the Global Frontier Hybrid Interface Materials(GFHIM)of the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT&Future Planning(No.2013M3A6B1078874)funded by the National Nature Science Foundation of China(No.51301181)+2 种基金the Tianjin Key Research Program of Application Foundation and Advanced Technology(No.15JCZDJC39700)the Tianjin Science and Technology correspondent project(No.16JCTPJC49500)the Innovation Team Training Plan of Tianjin Universities and colleges(No.TD12-5043)
文摘The Cr–Si–N coatings were prepared by combining system of high-power impulse magnetron sputtering and pulsed DC magnetron sputtering. The Si content in the coating was adjusted by changing the sputtering power of the Si target.By virtue of electron-probe microanalysis, X-ray diffraction analysis and scanning electron microscopy, the influence of the Si content on the coating composition, phase constituents, deposition rate, surface morphology and microstructure was investigated systematically. In addition, the change rules of micro-hardness, internal stress, adhesion, friction coefficient and wear rate with increasing Si content were also obtained. In this work, the precipitation of silicon in the coating was found.With increasing Si content, the coating microstructure gradually evolved from continuous columnar to discontinuous columnar and quasi-equiaxed crystals; accordingly, the coating inner stress first declined sharply and then kept almost constant. Both the coating hardness and the friction coefficient have the same change tendency with the increase of the Si content, namely increasing at first and then decreasing. The Cr–Si–N coating presented the highest hardness and average friction coefficient for an Si content of about 9.7 at.%, but the wear resistance decreased slightly due to the high brittleness.The above phenomenon was attributed to a microstructural evolution of the Cr–Si–N coatings induced by the silicon addition.