期刊文献+
共找到2,558篇文章
< 1 2 128 >
每页显示 20 50 100
Emoti-Shing: Detecting Vishing Attacks by Learning Emotion Dynamics through Hidden Markov Models
1
作者 Virgile Simé Nyassi Franklin Tchakounté +3 位作者 Blaise Omer Yenké Duplex Elvis Houpa Danga Magnuss Dufe Ngoran Jean Louis Kedieng Ebongue Fendji 《Journal of Intelligent Learning Systems and Applications》 2024年第3期274-315,共42页
This study examines vishing, a form of social engineering scam using voice communication to deceive individuals into revealing sensitive information or losing money. With the rise of smartphone usage, people are more ... This study examines vishing, a form of social engineering scam using voice communication to deceive individuals into revealing sensitive information or losing money. With the rise of smartphone usage, people are more susceptible to vishing attacks. The proposed Emoti-Shing model analyzes potential victims’ emotions using Hidden Markov Models to track vishing scams by examining the emotional content of phone call audio conversations. This approach aims to detect vishing scams using biological features of humans, specifically emotions, which cannot be easily masked or spoofed. Experimental results on 30 generated emotions indicate the potential for increased vishing scam detection through this approach. 展开更多
关键词 Social Engineering hidden markov Model Vishing Voice Mining
下载PDF
An Intrusion Detection Method Based on Hierarchical Hidden Markov Models 被引量:2
2
作者 JIA Chunfu YANG Feng 《Wuhan University Journal of Natural Sciences》 CAS 2007年第1期135-138,共4页
This paper presents an anomaly detection approach to detect intrusions into computer systems. In this approach, a hierarchical hidden Markov model (HHMM) is used to represent a temporal profile of normal behavior in... This paper presents an anomaly detection approach to detect intrusions into computer systems. In this approach, a hierarchical hidden Markov model (HHMM) is used to represent a temporal profile of normal behavior in a computer system. The HHMM of the norm profile is learned from historic data of the system's normal behavior. The observed behavior of the system is analyzed to infer the probability that the HHMM of the norm profile supports the observed behavior. A low probability of support indicates an anomalous behavior that may result from intrusive activities. The model was implemented and tested on the UNIX system call sequences collected by the University of New Mexico group. The testing results showed that the model can clearly identify the anomaly activities and has a better performance than hidden Markov model. 展开更多
关键词 intrusion detection hierarchical hidden markov model anomaly detection
下载PDF
An Examination of Male and Female Monthly Employment Rates over Time in Canada and the United States Using Hidden Markov Probability Models
3
作者 William H. Laverty Ivan W. Kelly 《Open Journal of Statistics》 2018年第5期837-845,共9页
In this paper, we will illustrate the use and power of Hidden Markov models in analyzing multivariate data over time. The data used in this study was obtained from the Organization for Economic Co-operation and Develo... In this paper, we will illustrate the use and power of Hidden Markov models in analyzing multivariate data over time. The data used in this study was obtained from the Organization for Economic Co-operation and Development (OECD. Stat database url: https://stats.oecd.org/) and encompassed monthly data on the employment rate of males and females in Canada and the United States (aged 15 years and over;seasonally adjusted from January 1995 to July 2018). Two different underlying patterns of trends in employment over the 23 years observation period were uncovered. 展开更多
关键词 EMPLOYMENT Trends hidden markov models Multivariate Data CANADA UNITED States
下载PDF
Hidden Markov Models to Estimate the Lagged Effects of Weather on Stroke and Ischemic Heart Disease
4
作者 Hiroshi Morimoto 《Applied Mathematics》 2016年第13期1415-1425,共12页
The links between low temperature and the incidence of disease have been studied by many researchers. What remains still unclear is the exact nature of the relation, especially the mechanism by which the change of wea... The links between low temperature and the incidence of disease have been studied by many researchers. What remains still unclear is the exact nature of the relation, especially the mechanism by which the change of weather effects on the onset of diseases. The existence of lag period between exposure to temperature and its effect on mortality may reflect the nature of the onset of diseases. Therefore, to assess lagged effects becomes potentially important. The most of studies on lags used the method by Lag-distributed Poisson Regression, and neglected extreme case as random noise to get correlations. In order to assess the lagged effect, we proposed a new approach, i.e., Hidden Markov Model by Self Organized Map (HMM by SOM) apart from well-known regression models. HMM by SOM includes the randomness in its nature and encompasses the extreme cases which were neglected by auto-regression models. The daily data of the number of patients transported by ambulance in Nagoya, Japan, were used. SOM was carried out to classify the meteorological elements into six classes. These classes were used as “states” of HMM. HMM was used to describe a background process which might produce the time series of the incidence of diseases. The background process was considered to change randomly weather states, classified by SOM. We estimated the lagged effects of weather change on the onset of both cerebral infarction and ischemic heart disease. This fact is potentially important in that if one could trace a path in the chain of events leading from temperature change to death, one might be able to prevent it and avert the fatal outcome. 展开更多
关键词 hidden markov Model Self Organized Map STROKE Cerebral Infarction Ischemic Heart Disease
下载PDF
Fully Polarimetric Land Cover Classification Based on Hidden Markov Models Trained with Multiple Observations
5
作者 Konstantinos Karachristos Georgia Koukiou Vassilis Anastassopoulos 《Advances in Remote Sensing》 2021年第3期102-114,共13页
A land cover classification procedure is presented utilizing the information content of fully polarimetric SAR images. The Cameron coherent target decomposition (CTD) is employed to characterize each pixel, using a se... A land cover classification procedure is presented utilizing the information content of fully polarimetric SAR images. The Cameron coherent target decomposition (CTD) is employed to characterize each pixel, using a set of canonical scattering mechanisms in order to describe the physical properties of the scatterer. The novelty of the proposed classification approach lies on the use of Hidden Markov Models (HMM) to uniquely characterize each type of land cover. The motivation to this approach is the investigation of the alternation between scattering mechanisms from SAR pixel to pixel. Depending </span><span style="font-family:Verdana;">on the observations-scattering mechanisms and exploiting the transitions </span><span style="font-family:Verdana;">between the scattering mechanisms we decide upon the HMM-land cover type. The classification process is based on the likelihood of observation sequences </span><span style="font-family:Verdana;">been evaluated by each model. The performance of the classification ap</span><span style="font-family:Verdana;">proach is assessed my means of fully polarimetric SLC SAR data from the broader </span><span style="font-family:Verdana;">area of Vancouver, Canada and was found satisfactory, reaching a success</span><span style="font-family:Verdana;"> from 87% to over 99%. 展开更多
关键词 Fully Polarimetric SAR Coherent Decomposition Land Cover Classification hidden markov models Remote Sensing
下载PDF
Hidden Markov Models for Automatic Speech Recognition
6
作者 Mbarki Aymen Ammari Abdelaziz Sghaier Halim Hassen Maaref 《Journal of Mechanics Engineering and Automation》 2011年第1期68-73,共6页
In this paper the authors look into the problem of Hidden Markov Models (HMM): the evaluation, the decoding and the learning problem. The authors have explored an approach to increase the effectiveness of HMM in th... In this paper the authors look into the problem of Hidden Markov Models (HMM): the evaluation, the decoding and the learning problem. The authors have explored an approach to increase the effectiveness of HMM in the speech recognition field. Although hidden Markov modeling has significantly improved the performance of current speech-recognition systems, the general problem of completely fluent speaker-independent speech recognition is still far from being solved. For example, there is no system which is capable of reliably recognizing unconstrained conversational speech. Also, there does not exist a good way to infer the language structure from a limited corpus of spoken sentences statistically. Therefore, the authors want to provide an overview of the theory of HMM, discuss the role of statistical methods, and point out a range of theoretical and practical issues that deserve attention and are necessary to understand so as to further advance research in the field of speech recognition. 展开更多
关键词 hidden markov models hmms speech recognition HMM problems viterbi algorithm.
下载PDF
The on-line direct fitting of low signal-noise ratio single ion channel recordings based on hidden Markov models
7
作者 HAN Xiao dong,LIU Xiang ming,PAN Hua,TAO min,LIN Jia rui Institute of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074,China 《Chinese Journal of Biomedical Engineering(English Edition)》 2002年第2期51-60,共10页
Many kinds of channel currents are especially weak and the background noise dominates in the patch clamp recordings. This makes the threshold detection fail during estimating of the transition probabilities. So direct... Many kinds of channel currents are especially weak and the background noise dominates in the patch clamp recordings. This makes the threshold detection fail during estimating of the transition probabilities. So direct fitting of the patch clamp recording, not of the histogram coming from the recordings, is a desirable way to estimate the transition probabilities. Iterative batch EM algorithm based on hidden markov model has been used in this field but which has the "curse of dimensionality" and besides cant keep tracking the varying of the parameters. A new on line sequential iterative one is proposed here, which needs fewer computational efforts and can adaptively keep tracking the varying of parameters. Simulations suggest its robust, effective and convenient. 展开更多
关键词 SINGLE ion channel RECORDING hidden markov model (HMM) on line algorithm Kullback Leibler (KL) information measure
下载PDF
Hidden Markov Models and Self-Organizing Maps Applied to Stroke Incidence
8
作者 Hiroshi Morimoto 《Open Journal of Applied Sciences》 2016年第3期158-168,共11页
Several studies were devoted to investigate the effects of meteorological factors on the occurrence of stroke. Regression models had been mostly used to assess the correlation between weather and stroke incidence. How... Several studies were devoted to investigate the effects of meteorological factors on the occurrence of stroke. Regression models had been mostly used to assess the correlation between weather and stroke incidence. However, these methods could not describe the process proceeding in the back-ground of stroke incidence. The purpose of this study was to provide a new approach based on Hidden Markov Models (HMMs) and self-organizing maps (SOM), interpreting the background from the viewpoint of weather variability. Based on meteorological data, SOM was performed to classify weather patterns. Using these classes by SOM as randomly changing “states”, our Hidden Markov Models were constructed with “observation data” that were extracted from the daily data of emergency transport at Nagoya City in Japan. We showed that SOM was an effective method to get weather patterns that would serve as “states” of Hidden Markov Models. Our Hidden Markov Models provided effective models to clarify background process for stroke incidence. The effectiveness of these Hidden Markov Models was estimated by stochastic test for root mean square errors (RMSE). “HMMs with states by SOM” would serve as a description of the background process of stroke incidence and were useful to show the influence of weather on stroke onset. This finding will contribute to an improvement of our understanding for links between weather variability and stroke incidence. 展开更多
关键词 hidden markov Model Self Organized Maps STROKE Cerebral Infarction
下载PDF
Morpho-Syntactic Tagging of Text in “Baoule” Language Based on Hidden Markov Models (HMM)
9
作者 Hyacinthe Konan Bi Tra Gooré +1 位作者 Raymond Gbégbé Olivier Asseu 《Journal of Software Engineering and Applications》 2016年第10期516-523,共9页
The label text is a very important tool for the automatic processing of language. It is used in several applications such as morphological and syntactic text analysis, index-ing, retrieval, finished networks determini... The label text is a very important tool for the automatic processing of language. It is used in several applications such as morphological and syntactic text analysis, index-ing, retrieval, finished networks deterministic (in which all combinations of words that are accepted by the grammar are listed) or by statistical grammars (e.g., an n-gram in which the probabilities of sequences of n words in a specific order are given), etc. In this article, we developed a morphosyntactic labeling system language “Baoule” using hidden Markov models. This will allow us to build a tagged reference corpus and rep-resent major grammatical rules faced “Baoule” language in general. To estimate the parameters of this model, we used a training corpus manually labeled using a set of morpho-syntactic labels. We then proceed to an improvement of the system through the re-estimation procedure parameters of this model. 展开更多
关键词 CORPUS the Set of Tags the Morpho-Syntactic Tagging “Baoule” Language hidden markov Model
下载PDF
Application of Hidden Markov Models in Stock Forecasting
10
作者 Menghan Yu Panji Wang Tong Wang 《Proceedings of Business and Economic Studies》 2022年第6期14-21,共8页
In this paper,we tested our methodology on the stocks of four representative companies:Apple,Comcast Corporation(CMCST),Google,and Qualcomm.We compared their performance to several stocks using the hidden Markov model... In this paper,we tested our methodology on the stocks of four representative companies:Apple,Comcast Corporation(CMCST),Google,and Qualcomm.We compared their performance to several stocks using the hidden Markov model(HMM)and forecasts using mean absolute percentage error(MAPE).For simplicity,we considered four main features in these stocks:open,close,high,and low prices.When using the HMM for forecasting,the HMM has the best prediction for the daily low stock price and daily high stock price of Apple and CMCST,respectively.By calculating the MAPE for the four data sets of Google,the close price has the largest prediction error,while the open price has the smallest prediction error.The HMM has the largest prediction error and the smallest prediction error for Qualcomm’s daily low stock price and daily high stock price,respectively. 展开更多
关键词 hidden markov model Mean absolute error Stock market
下载PDF
Ontology mapping based on hidden Markov model 被引量:2
11
作者 尹康银 宋自林 徐平 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期389-393,共5页
The existing ontology mapping methods mainly consider the structure of the ontology and the mapping precision is lower to some extent. According to statistical theory, a method which is based on the hidden Markov mode... The existing ontology mapping methods mainly consider the structure of the ontology and the mapping precision is lower to some extent. According to statistical theory, a method which is based on the hidden Markov model is presented to establish ontology mapping. This method considers concepts as models, and attributes, relations, hierarchies, siblings and rules of the concepts as the states of the HMM, respectively. The models corresponding to the concepts are built by virtue of learning many training instances. On the basis of the best state sequence that is decided by the Viterbi algorithm and corresponding to the instance, mapping between the concepts can be established by maximum likelihood estimation. Experimental results show that this method can improve the precision of heterogeneous ontology mapping effectively. 展开更多
关键词 ontology heterogeneity ontology mapping hidden markov model semantic web
下载PDF
Optimal state and branch sequence based parameter estimation of continuous hidden Markov model
12
作者 俞璐 吴乐南 谢钧 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期136-140,共5页
A parameter estimation algorithm of the continuous hidden Markov model isintroduced and the rigorous proof of its convergence is also included. The algorithm uses theViterbi algorithm instead of K-means clustering use... A parameter estimation algorithm of the continuous hidden Markov model isintroduced and the rigorous proof of its convergence is also included. The algorithm uses theViterbi algorithm instead of K-means clustering used in the segmental K-means algorithm to determineoptimal state and branch sequences. Based on the optimal sequence, parameters are estimated withmaximum-likelihood as objective functions. Comparisons with the traditional Baum-Welch and segmentalK-means algorithms on various aspects, such as optimal objectives and fundamentals, are made. Allthree algorithms are applied to face recognition. Results indicate that the proposed algorithm canreduce training time with comparable recognition rate and it is least sensitive to the training set.So its average performance exceeds the other two. 展开更多
关键词 continuous hidden markov model optimal state and branch sequence MAXIMUMLIKELIHOOD CONVERGENCE viterbi algorithm
下载PDF
无限隐Markov模型在缺失数据轴承退化趋势预测中的应用
13
作者 李志农 李舒扬 +1 位作者 柳宝 陶俊勇 《振动工程学报》 EI CSCD 北大核心 2023年第2期574-581,共8页
相比较于在完整数据下设备性能退化预测,缺失数据下的预测是更加困难的,也是更有意义的。然而,现有的轴承性能退化预测方法都未考虑缺失数据下的预测,基于此,提出了一种基于无限隐马尔可夫模型的缺失数据下轴承退化预测方法。在提出的... 相比较于在完整数据下设备性能退化预测,缺失数据下的预测是更加困难的,也是更有意义的。然而,现有的轴承性能退化预测方法都未考虑缺失数据下的预测,基于此,提出了一种基于无限隐马尔可夫模型的缺失数据下轴承退化预测方法。在提出的方法中,通过建立无限隐马尔可夫预测模型,预测了滚动轴承样本数据在振荡阶段所缺失的数据点,形成新的完整数据。同时,再使用建立的预测模型对新的完整数据进行单步预测。实验结果表明,与真实值对比,得到的预测数据具有较小的平均误差值;对比真实值、完整数据下的预测值和新的完整数据下的预测值,验证了提出方法的有效性,能够反映滚动轴承退化的变化趋势。提出的方法可为数据缺失下滚动轴承的退化趋势预测提供一种思路,具有重要的理论价值和工程应用价值。 展开更多
关键词 故障诊断 滚动轴承 无限隐马尔可夫模型(iHMM) 性能退化 趋势预测 缺失数据
下载PDF
On-line Fault Diagnosis in Industrial Processes Using Variable Moving Window and Hidden Markov Model 被引量:9
14
作者 周韶园 谢磊 王树青 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第3期388-395,共8页
An integrated framework is presented to represent and classify process data for on-line identifying abnormal operating conditions. It is based on pattern recognition principles and consists of a feature extraction ste... An integrated framework is presented to represent and classify process data for on-line identifying abnormal operating conditions. It is based on pattern recognition principles and consists of a feature extraction step, by which wavelet transform and principal component analysis are used to capture the inherent characteristics from process measurements, followed by a similarity assessment step using hidden Markov model (HMM) for pattern comparison. In most previous cases, a fixed-length moving window was employed to track dynamic data, and often failed to capture enough information for each fault and sometimes even deteriorated the diagnostic performance. A variable moving window, the length of which is modified with time, is introduced in this paper and case studies on the Tennessee Eastman process illustrate the potential of the proposed method. 展开更多
关键词 wavelet transform principal component analysis hidden markov model variable moving window fault diagnosis
下载PDF
Frame erasure concealment in wideband speech coding based on large hidden Markov model
15
作者 王仕奎 汤一彬 +1 位作者 尤红岩 吴镇扬 《Journal of Southeast University(English Edition)》 EI CAS 2009年第2期152-155,共4页
Frame erasure concealment is studied to solve the problem of rapid speech quality reduction due to the loss of speech parameters during speech transmission. A large hidden Markov model is applied to model the immittan... Frame erasure concealment is studied to solve the problem of rapid speech quality reduction due to the loss of speech parameters during speech transmission. A large hidden Markov model is applied to model the immittance spectral frequency (ISF) parameters in AMR-WB codec to optimally estimate the lost ISFs based on the minimum mean square error (MMSE) rule. The estimated ISFs are weighted with the ones of their previous neighbors to smooth the speech, resulting in the actual concealed ISF vectors. They are used instead of the lost ISFs in the speech synthesis on the receiver. Comparison is made between the speech concealed by this algorithm and by Annex I of G. 722. 2 specification, and simulation shows that the proposed concealment algorithm can lead to better performance in terms of frequency-weighted spectral distortion and signal-to-noise ratio compared to the baseline method, with an increase of 2.41 dB in signal-to-noise ratio (SNR) and a reduction of 0. 885 dB in frequency-weighted spectral distortion. 展开更多
关键词 frame erasure concealment wideband speech large hidden markov model immittance spectral frequency(ISF) parameter
下载PDF
Improved hidden Markov model for speech recognition and POS tagging 被引量:4
16
作者 袁里驰 《Journal of Central South University》 SCIE EI CAS 2012年第2期511-516,共6页
In order to overcome defects of the classical hidden Markov model (HMM), Markov family model (MFM), a new statistical model was proposed. Markov family model was applied to speech recognition and natural language proc... In order to overcome defects of the classical hidden Markov model (HMM), Markov family model (MFM), a new statistical model was proposed. Markov family model was applied to speech recognition and natural language processing. The speaker independently continuous speech recognition experiments and the part-of-speech tagging experiments show that Markov family model has higher performance than hidden Markov model. The precision is enhanced from 94.642% to 96.214% in the part-of-speech tagging experiments, and the work rate is reduced by 11.9% in the speech recognition experiments with respect to HMM baseline system. 展开更多
关键词 hidden markov model markov family model speech recognition part-of-speech tagging
下载PDF
Hidden Markov model based epileptic seizure detection using tunable Q wavelet transform 被引量:2
17
作者 Deba Prasad Dash Maheshkumar H Kolekar 《The Journal of Biomedical Research》 CAS CSCD 2020年第3期170-179,共10页
Epilepsy is one of the most prevalent neurological disorders affecting 70 million people worldwide.The present work is focused on designing an efficient algorithm for automatic seizure detection by using electroenceph... Epilepsy is one of the most prevalent neurological disorders affecting 70 million people worldwide.The present work is focused on designing an efficient algorithm for automatic seizure detection by using electroencephalogram(EEG) as a noninvasive procedure to record neuronal activities in the brain.EEG signals' underlying dynamics are extracted to differentiate healthy and seizure EEG signals.Shannon entropy,collision entropy,transfer entropy,conditional probability,and Hjorth parameter features are extracted from subbands of tunable Q wavelet transform.Efficient decomposition level for different feature vector is selected using the Kruskal-Wallis test to achieve good classification.Different features are combined using the discriminant correlation analysis fusion technique to form a single fused feature vector.The accuracy of the proposed approach is higher for Q=2 and J=10.Transfer entropy is observed to be significant for different class combinations.Proposed approach achieved 100% accuracy in classifying healthy-seizure EEG signal using simple and robust features and hidden Markov model with less computation time.The proposed approach efficiency is evaluated in classifying seizure and non-seizure surface EEG signals.The system has achieved 96.87% accuracy in classifying surface seizure and nonseizure EEG segments using efficient features extracted from different J level. 展开更多
关键词 ELECTROENCEPHALOGRAM EPILEPSY SEIZURE tunable Q wavelet transform ENTROPY hidden markov model
下载PDF
FAULT DIAGNOSIS APPROACH BASED ON HIDDEN MARKOV MODEL AND SUPPORT VECTOR MACHINE 被引量:4
18
作者 LIU Guanjun LIU Xinmin QIU Jing HU Niaoqing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期92-95,共4页
Aiming at solving the problems of machine-learning in fault diagnosis, a diagnosis approach is proposed based on hidden Markov model (HMM) and support vector machine (SVM). HMM usually describes intra-class measur... Aiming at solving the problems of machine-learning in fault diagnosis, a diagnosis approach is proposed based on hidden Markov model (HMM) and support vector machine (SVM). HMM usually describes intra-class measure well and is good at dealing with continuous dynamic signals. SVM expresses inter-class difference effectively and has perfect classify ability. This approach is built on the merit of HMM and SVM. Then, the experiment is made in the transmission system of a helicopter. With the features extracted from vibration signals in gearbox, this HMM-SVM based diagnostic approach is trained and used to monitor and diagnose the gearbox's faults. The result shows that this method is better than HMM-based and SVM-based diagnosing methods in higher diagnostic accuracy with small training samples. 展开更多
关键词 hidden markov model Support vector machine Fault diagnosis
下载PDF
Statistical Modeling with a Hidden Markov Tree and High-resolution Interpolation for Spaceborne Radar Reflectivity in the Wavelet Domain 被引量:1
19
作者 Leilei KOU Yinfeng JIANG +1 位作者 Aijun CHEN Zhenhui WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第12期1359-1374,共16页
With the increasing availability of precipitation radar data from space,enhancement of the resolution of spaceborne precipitation observations is important,particularly for hazard prediction and climate modeling at lo... With the increasing availability of precipitation radar data from space,enhancement of the resolution of spaceborne precipitation observations is important,particularly for hazard prediction and climate modeling at local scales relevant to extreme precipitation intensities and gradients.In this paper,the statistical characteristics of radar precipitation reflectivity data are studied and modeled using a hidden Markov tree(HMT)in the wavelet domain.Then,a high-resolution interpolation algorithm is proposed for spaceborne radar reflectivity using the HMT model as prior information.Owing to the small and transient storm elements embedded in the larger and slowly varying elements,the radar precipitation data exhibit distinct multiscale statistical properties,including a non-Gaussian structure and scale-to-scale dependency.An HMT model can capture well the statistical properties of radar precipitation,where the wavelet coefficients in each sub-band are characterized as a Gaussian mixture model(GMM),and the wavelet coefficients from the coarse scale to fine scale are described using a multiscale Markov process.The state probabilities of the GMM are determined using the expectation maximization method,and other parameters,for instance,the variance decay parameters in the HMT model are learned and estimated from high-resolution ground radar reflectivity images.Using the prior model,the wavelet coefficients at finer scales are estimated using local Wiener filtering.The interpolation algorithm is validated using data from the precipitation radar onboard the Tropical Rainfall Measurement Mission satellite,and the reconstructed results are found to be able to enhance the spatial resolution while optimally reproducing the local extremes and gradients. 展开更多
关键词 spaceborne precipitation radar hidden markov tree model Gaussian mixture model interpolation in the wavelet domain multiscale statistical properties
下载PDF
Improving Language Translation Using the Hidden Markov Model 被引量:1
20
作者 Yunpeng Chang Xiaoliang Wang +2 位作者 Meihua Xue Yuzhen Liu Frank Jiang 《Computers, Materials & Continua》 SCIE EI 2021年第6期3921-3931,共11页
Translation software has become an important tool for communication between different languages.People’s requirements for translation are higher and higher,mainly reflected in people’s desire for barrier free cultur... Translation software has become an important tool for communication between different languages.People’s requirements for translation are higher and higher,mainly reflected in people’s desire for barrier free cultural exchange.With a large corpus,the performance of statistical machine translation based on words and phrases is limited due to the small size of modeling units.Previous statistical methods rely primarily on the size of corpus and number of its statistical results to avoid ambiguity in translation,ignoring context.To support the ongoing improvement of translation methods built upon deep learning,we propose a translation algorithm based on the Hidden Markov Model to improve the use of context in the process of translation.During translation,our Hidden Markov Model prediction chain selects a number of phrases with the highest result probability to form a sentence.The collection of all of the generated sentences forms a topic sequence.Using probabilities and article sequences determined from the training set,our method again applies the Hidden Markov Model to form the final translation to improve the context relevance in the process of translation.This algorithm improves the accuracy of translation,avoids the combination of invalid words,and enhances the readability and meaning of the resulting translation. 展开更多
关键词 Translation software hidden markov model context translation
下载PDF
上一页 1 2 128 下一页 到第
使用帮助 返回顶部