A model of the universe (preprint 2019), based on a quantum approach to the evolution of space-time as well as on an equation of state that retains all the infinitesimal terms, has made it possible to estimate a large...A model of the universe (preprint 2019), based on a quantum approach to the evolution of space-time as well as on an equation of state that retains all the infinitesimal terms, has made it possible to estimate a large number of parameters relating to the universe and in particular the estimation of a colossal phantom energy E<sub>Λ</sub> represented by the existence of a hidden photon ŷpresent everywhere. This energy undergoes dilution in H<sup>4</sup> due to expansion of the universe. In order to introduce the effects of this energy on the curvature of space-time, we chose to express it by the cosmological constant Λ in the equation of the GR via the element tensor T<sup>00</sup>. This positive energy E<sub>Λ</sub> which acts as additional effect to gravity and we have expressed this energy in the form of an equation which expresses a so-called cosmological force F<sub>Λ</sub>. We estimated that this photon or hidden particle of spin 1 has an energy ~1 [meV] at our cosmic position t<sub>0</sub> which makes it an ultra-light axion ULA. Subsequently, with the action of this augmented force, especially in the first 400 [My] we were able to explain, in part, the rapid development of galaxy formation as seen by JWST as well as several observed dynamic behaviors of the barionic mass of some galaxies as MW, M33, UGC12591, NGC3198, UGC2885 and NGC253 whose observations raise questions and require additional explanations that led to the likely existence of unobserved matter called DM. However, it appears that this cosmological force makes it possible to explain several observations without the use of this DM. A first conclusion was drawn, namely the much earlier formation of galaxies by the action of this cosmological force coupled with gravity (GLASS z12). In addition, the model made it possible to explain the need or not to use the concept of DM for ETGs and LTGs by the more or less early and long period of the beginning of galaxy formation over a period ranging from ~170 to 1200 [My]. Thus, the model makes it possible to explain to a large extent the observations of the dynamics of the galaxies studied. However, several questions remain.展开更多
文摘A model of the universe (preprint 2019), based on a quantum approach to the evolution of space-time as well as on an equation of state that retains all the infinitesimal terms, has made it possible to estimate a large number of parameters relating to the universe and in particular the estimation of a colossal phantom energy E<sub>Λ</sub> represented by the existence of a hidden photon ŷpresent everywhere. This energy undergoes dilution in H<sup>4</sup> due to expansion of the universe. In order to introduce the effects of this energy on the curvature of space-time, we chose to express it by the cosmological constant Λ in the equation of the GR via the element tensor T<sup>00</sup>. This positive energy E<sub>Λ</sub> which acts as additional effect to gravity and we have expressed this energy in the form of an equation which expresses a so-called cosmological force F<sub>Λ</sub>. We estimated that this photon or hidden particle of spin 1 has an energy ~1 [meV] at our cosmic position t<sub>0</sub> which makes it an ultra-light axion ULA. Subsequently, with the action of this augmented force, especially in the first 400 [My] we were able to explain, in part, the rapid development of galaxy formation as seen by JWST as well as several observed dynamic behaviors of the barionic mass of some galaxies as MW, M33, UGC12591, NGC3198, UGC2885 and NGC253 whose observations raise questions and require additional explanations that led to the likely existence of unobserved matter called DM. However, it appears that this cosmological force makes it possible to explain several observations without the use of this DM. A first conclusion was drawn, namely the much earlier formation of galaxies by the action of this cosmological force coupled with gravity (GLASS z12). In addition, the model made it possible to explain the need or not to use the concept of DM for ETGs and LTGs by the more or less early and long period of the beginning of galaxy formation over a period ranging from ~170 to 1200 [My]. Thus, the model makes it possible to explain to a large extent the observations of the dynamics of the galaxies studied. However, several questions remain.