Soft matter has attracted extensive attention due to its special physical/chemical properties and holds great promise in many applications. However, obtaining a detailed understanding of both complex fluid and mass tr...Soft matter has attracted extensive attention due to its special physical/chemical properties and holds great promise in many applications. However, obtaining a detailed understanding of both complex fluid and mass transport in soft matter, especially in hierarchical porous media of biological tissues, still remains a huge challenge. Herein, inspired by fast tracer transport in loose connective tissues of living systems, we observed an interesting phenomenon of fast molecular transport in situ in an artificial hierarchical multiphase porous medium (a micrometer scale hydrophobic fiber network filled with nanometer scale hydrophilic porous medium), which was simply fabricated through electro- spinning technology and polymerization. The transportation speed of molecules in the micrometer fiber network is larger than simple diffusion in nanometer media, which is better described by Fick's law. We further proved that the phenomenon is based on the nanoconfined air/water/solid interface around the micrometer hydrophobic fibers. We focus on the key factors, referring to SA, (the confined multiphase area around the microfibers) and Nc (the connectivity node degree of the skeletal portion in the nanometer hydrogel medium). Next, a quantitative parameter, VTCM (transport chance mean-value), was introduced to describe the molecular transport capability of the fiber network within hierarchical multiphase porous systems. These fundamental advances can be applied de novo to understand the process of so-called simple diffusion in biological systems, and even to re-describe many molecular events in biologically nanoconfined spaces.展开更多
The biodistribution of gold nanoparticles (AuNPs) is closely related to toxicological effects and is of great concern because of their potential application in diverse biomedical areas. However, with the discovery o...The biodistribution of gold nanoparticles (AuNPs) is closely related to toxicological effects and is of great concern because of their potential application in diverse biomedical areas. However, with the discovery of novel anatomic and histological structures for fluid transport, the underlying mechanisms involved in the in vivo transport and biodistribution of AuNPs require further in-depth investigations. In the current study, we investigated the biodistribution of 10-nm AuNPs in rats after intervaginal space injection (ISI) in the tarsal tunnel, where a focal point of tendons, vessels, and nerve fibers may optimally connect to other remote connective tissues. The intravenous injection (IVI) of AuNPs served as a control. The blood and organs were collected at 5, 15, and 30 min and at 1, 4, 12, and 24 h after injection for quantitative analysis of Au distribution with inductively coupled plasma mass spectrometry (ICP-MS). IVI and ISI yielded significantly different results: The AuNP content in the blood after ISI was much lower than that after IVI; was similar in the lungs, heart, and intestines; and was higher in the skin and muscle. These findings were supported by the ratios of AuNP content and relative organ AuNP distribution proportions. Our results demonstrated a fast, direct, and the circulation-independent AuNP-organ transport pathway, which may improve our understanding of physiological and pathological biodistribution processes in biological systems. Furthermore, these results provide novel insights into the in vivo transport and biodistribution of AuNPs, which may lead to novel and efficient therapeutic and administration strategies.展开更多
The fascia and the fascial space can help provide a better understanding of the body. An intervaginal space injection (ISI) provides unique advantages that require further investigation. An upper limb model includin...The fascia and the fascial space can help provide a better understanding of the body. An intervaginal space injection (ISI) provides unique advantages that require further investigation. An upper limb model including physiological conditions and the tumor process was chosen to determine the flow behavior of liquid metal after ISI. In normal rats, after the injection of liquid metal into the intervaginal space comprising tendons, vessels, and nerves, magnetic resonance imaging and an anatomy experiment indicated that the liquid metal wrapped around the fascial space and finally reached the fingertip downstream and the armpit upstream in addition to the neurovascular bundle without vessels or lymph nodes. Using environmental scanning electron microscopy (ESEM) images, we discovered that the liquid metal was wrapped around the fibers of the fascia and moved forward in microscale or nanoscale areas. These data confirmed a fascia-based pathway. In tumors, the liquid metal moved to the tumor capsule through the damaged spot, where cancer cells destroy the integrity of the fascia between the normal cells and cancer cells. The liquid metal partly wrapped around the tumor and separated the tumor from the surrounding normal muscle. The ESEM images showed that fibers of the fascia penetrated the tumor, thus forming a network through which the liquid metal penetrated the tumor. Our study illustrated the physiological and pathological flow behavior of liquid metal in the upper limb after ISI and demonstrated a nonvascular pathway in the fascia. ISI may be useful for clinical treatment in the fascial pathway.展开更多
基金This study was supported by the National Natural Science Foundation of China (No. 81141118) and the National Basic Research Program of China (973 Program) (Nos. 2012CB9333800 and 2012CB518506).
文摘Soft matter has attracted extensive attention due to its special physical/chemical properties and holds great promise in many applications. However, obtaining a detailed understanding of both complex fluid and mass transport in soft matter, especially in hierarchical porous media of biological tissues, still remains a huge challenge. Herein, inspired by fast tracer transport in loose connective tissues of living systems, we observed an interesting phenomenon of fast molecular transport in situ in an artificial hierarchical multiphase porous medium (a micrometer scale hydrophobic fiber network filled with nanometer scale hydrophilic porous medium), which was simply fabricated through electro- spinning technology and polymerization. The transportation speed of molecules in the micrometer fiber network is larger than simple diffusion in nanometer media, which is better described by Fick's law. We further proved that the phenomenon is based on the nanoconfined air/water/solid interface around the micrometer hydrophobic fibers. We focus on the key factors, referring to SA, (the confined multiphase area around the microfibers) and Nc (the connectivity node degree of the skeletal portion in the nanometer hydrogel medium). Next, a quantitative parameter, VTCM (transport chance mean-value), was introduced to describe the molecular transport capability of the fiber network within hierarchical multiphase porous systems. These fundamental advances can be applied de novo to understand the process of so-called simple diffusion in biological systems, and even to re-describe many molecular events in biologically nanoconfined spaces.
基金This work was supported by the National Basic Research Program of China (Nos. 2015CB5545507 and 2013CB933700) and the National Natural Science Foundation of China (No. 21305024).
文摘The biodistribution of gold nanoparticles (AuNPs) is closely related to toxicological effects and is of great concern because of their potential application in diverse biomedical areas. However, with the discovery of novel anatomic and histological structures for fluid transport, the underlying mechanisms involved in the in vivo transport and biodistribution of AuNPs require further in-depth investigations. In the current study, we investigated the biodistribution of 10-nm AuNPs in rats after intervaginal space injection (ISI) in the tarsal tunnel, where a focal point of tendons, vessels, and nerve fibers may optimally connect to other remote connective tissues. The intravenous injection (IVI) of AuNPs served as a control. The blood and organs were collected at 5, 15, and 30 min and at 1, 4, 12, and 24 h after injection for quantitative analysis of Au distribution with inductively coupled plasma mass spectrometry (ICP-MS). IVI and ISI yielded significantly different results: The AuNP content in the blood after ISI was much lower than that after IVI; was similar in the lungs, heart, and intestines; and was higher in the skin and muscle. These findings were supported by the ratios of AuNP content and relative organ AuNP distribution proportions. Our results demonstrated a fast, direct, and the circulation-independent AuNP-organ transport pathway, which may improve our understanding of physiological and pathological biodistribution processes in biological systems. Furthermore, these results provide novel insights into the in vivo transport and biodistribution of AuNPs, which may lead to novel and efficient therapeutic and administration strategies.
基金We are sincerely thankful to Technical Institute of Physics and Chemistry at the Chinese Academy of Sciences for providing the liquid metal. This work was supported by the National Natural Science Foundation of China (NSFC) (No. 31470905).
文摘The fascia and the fascial space can help provide a better understanding of the body. An intervaginal space injection (ISI) provides unique advantages that require further investigation. An upper limb model including physiological conditions and the tumor process was chosen to determine the flow behavior of liquid metal after ISI. In normal rats, after the injection of liquid metal into the intervaginal space comprising tendons, vessels, and nerves, magnetic resonance imaging and an anatomy experiment indicated that the liquid metal wrapped around the fascial space and finally reached the fingertip downstream and the armpit upstream in addition to the neurovascular bundle without vessels or lymph nodes. Using environmental scanning electron microscopy (ESEM) images, we discovered that the liquid metal was wrapped around the fibers of the fascia and moved forward in microscale or nanoscale areas. These data confirmed a fascia-based pathway. In tumors, the liquid metal moved to the tumor capsule through the damaged spot, where cancer cells destroy the integrity of the fascia between the normal cells and cancer cells. The liquid metal partly wrapped around the tumor and separated the tumor from the surrounding normal muscle. The ESEM images showed that fibers of the fascia penetrated the tumor, thus forming a network through which the liquid metal penetrated the tumor. Our study illustrated the physiological and pathological flow behavior of liquid metal in the upper limb after ISI and demonstrated a nonvascular pathway in the fascia. ISI may be useful for clinical treatment in the fascial pathway.