期刊文献+
共找到33,158篇文章
< 1 2 250 >
每页显示 20 50 100
A Shared Natural Neighbors Based-Hierarchical Clustering Algorithm for Discovering Arbitrary-Shaped Clusters
1
作者 Zhongshang Chen Ji Feng +1 位作者 Fapeng Cai Degang Yang 《Computers, Materials & Continua》 SCIE EI 2024年第8期2031-2048,共18页
In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared... In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared neighbors,most neighbor relationships can only handle single structural relationships,and the identification accuracy is low for datasets with multiple structures.In life,people’s first instinct for complex things is to divide them into multiple parts to complete.Partitioning the dataset into more sub-graphs is a good idea approach to identifying complex structures.Taking inspiration from this,we propose a novel neighbor method:Shared Natural Neighbors(SNaN).To demonstrate the superiority of this neighbor method,we propose a shared natural neighbors-based hierarchical clustering algorithm for discovering arbitrary-shaped clusters(HC-SNaN).Our algorithm excels in identifying both spherical clusters and manifold clusters.Tested on synthetic datasets and real-world datasets,HC-SNaN demonstrates significant advantages over existing clustering algorithms,particularly when dealing with datasets containing arbitrary shapes. 展开更多
关键词 Cluster analysis shared natural neighbor hierarchical clustering
下载PDF
A Multilevel Hierarchical Parallel Algorithm for Large-Scale Finite Element Modal Analysis
2
作者 Gaoyuan Yu Yunfeng Lou +2 位作者 Hang Dong Junjie Li Xianlong Jin 《Computers, Materials & Continua》 SCIE EI 2023年第9期2795-2816,共22页
The strict and high-standard requirements for the safety and stability ofmajor engineering systems make it a tough challenge for large-scale finite element modal analysis.At the same time,realizing the systematic anal... The strict and high-standard requirements for the safety and stability ofmajor engineering systems make it a tough challenge for large-scale finite element modal analysis.At the same time,realizing the systematic analysis of the entire large structure of these engineering systems is extremely meaningful in practice.This article proposes a multilevel hierarchical parallel algorithm for large-scale finite element modal analysis to reduce the parallel computational efficiency loss when using heterogeneous multicore distributed storage computers in solving large-scale finite element modal analysis.Based on two-level partitioning and four-transformation strategies,the proposed algorithm not only improves the memory access rate through the sparsely distributed storage of a large amount of data but also reduces the solution time by reducing the scale of the generalized characteristic equation(GCEs).Moreover,a multilevel hierarchical parallelization approach is introduced during the computational procedure to enable the separation of the communication of inter-nodes,intra-nodes,heterogeneous core groups(HCGs),and inside HCGs through mapping computing tasks to various hardware layers.This method can efficiently achieve load balancing at different layers and significantly improve the communication rate through hierarchical communication.Therefore,it can enhance the efficiency of parallel computing of large-scale finite element modal analysis by fully exploiting the architecture characteristics of heterogeneous multicore clusters.Finally,typical numerical experiments were used to validate the correctness and efficiency of the proposedmethod.Then a parallel modal analysis example of the cross-river tunnel with over ten million degrees of freedom(DOFs)was performed,and ten-thousand core processors were applied to verify the feasibility of the algorithm. 展开更多
关键词 Heterogeneous multicore multilevel hierarchical parallel load balancing large-scale modal analysis
下载PDF
Detection of Residual Yarn in Bobbin Based on Odd Partial Gabor Filter and Multi-Color Space Hierarchical Clustering
3
作者 张瑾 张团善 +1 位作者 盛晓超 呼延鹏飞 《Journal of Donghua University(English Edition)》 CAS 2023年第6期649-660,共12页
In an automatic bobbin management system that simultaneously detects bobbin color and residual yarn,a composite texture segmentation and recognition operation based on an odd partial Gabor filter and multi-color space... In an automatic bobbin management system that simultaneously detects bobbin color and residual yarn,a composite texture segmentation and recognition operation based on an odd partial Gabor filter and multi-color space hierarchical clustering are proposed.Firstly,the parameter-optimized odd partial Gabor filter is used to distinguish bobbin and yarn texture,to explore Garbor parameters for yarn bobbins,and to accurately discriminate frequency characteristics of yarns and texture.Secondly,multi-color clustering segmentation using color spaces such as red,green,blue(RGB)and CIELUV(LUV)solves the problems of over-segmentation and segmentation errors,which are caused by the difficulty of accurately representing the complex and variable color information of yarns in a single-color space and the low contrast between the target and background.Finally,the segmented bobbin is combined with the odd partial Gabor’s edge recognition operator to further distinguish bobbin texture from yarn texture and locate the position and size of the residual yarn.Experimental results show that the method is robust in identifying complex texture,damaged and dyed bobbins,and multi-color yarns.Residual yarn identification can distinguish texture features and residual yarns well and it can be transferred to the detection and differentiation of complex texture,which is significantly better than traditional methods. 展开更多
关键词 residual yarn detection Gabor filter image segmentation multi-color space hierarchical clustering
下载PDF
Resizable, Rescalable and Free-Style Visualization of Hierarchical Clustering and Bioinformatics Analysis 被引量:1
4
作者 Ruming Li 《Journal of Data Analysis and Information Processing》 2020年第4期229-240,共12页
Graphical representation of hierarchical clustering results is of final importance in hierarchical cluster analysis of data. Unfortunately, almost all mathematical or statistical software may have a weak capability of... Graphical representation of hierarchical clustering results is of final importance in hierarchical cluster analysis of data. Unfortunately, almost all mathematical or statistical software may have a weak capability of showcasing such clustering results. Particularly, most of clustering results or trees drawn cannot be represented in a dendrogram with a resizable, rescalable and free-style fashion. With the “dynamic” drawing instead of “static” one, this research works around these weak functionalities that restrict visualization of clustering results in an arbitrary manner. It introduces an algorithmic solution to these functionalities, which adopts seamless pixel rearrangements to be able to resize and rescale dendrograms or tree diagrams. The results showed that the algorithm developed makes clustering outcome representation a really free visualization of hierarchical clustering and bioinformatics analysis. Especially, it possesses features of selectively visualizing and/or saving results in a specific size, scale and style (different views). 展开更多
关键词 hierarchical clustering clustering Visualization Dendrogram Drawing Tree Drawing Resizable and Rescalable Free-Style Visualization
下载PDF
A Processor Performance Prediction Method Based on Interpretable Hierarchical Belief Rule Base and Sensitivity Analysis
5
作者 Chen Wei-wei He Wei +3 位作者 Zhu Hai-long Zhou Guo-hui Mu Quan-qi Han Peng 《Computers, Materials & Continua》 SCIE EI 2023年第3期6119-6143,共25页
The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can i... The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can initially provide a solution to low prediction accuracy. However, theinterpretability of the model and the traceability of the results still warrantfurther investigation. Therefore, a processor performance prediction methodbased on interpretable hierarchical belief rule base (HBRB-I) and globalsensitivity analysis (GSA) is proposed. The method can yield more reliableprediction results. Evidence reasoning (ER) is firstly used to evaluate thehistorical data of the processor, followed by a performance prediction modelwith interpretability constraints that is constructed based on HBRB-I. Then,the whale optimization algorithm (WOA) is used to optimize the parameters.Furthermore, to test the interpretability of the performance predictionprocess, GSA is used to analyze the relationship between the input and thepredicted output indicators. Finally, based on the UCI database processordataset, the effectiveness and superiority of the method are verified. Accordingto our experiments, our prediction method generates more reliable andaccurate estimations than traditional models. 展开更多
关键词 hierarchical belief rule base(HBRB) evidence reasoning(ER) INTERPRETABILITY global sensitivity analysis(GSA) whale optimization algorithm(WOA)
下载PDF
Two-level Hierarchical Clustering Analysis and Application
6
作者 HU Hui-rong, WANG Zhou-jing (Department of Automation, Xiamen University, Xiamen 361005, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期283-284,共2页
Hierarchical clustering analysis based on statistic s is one of the most important mining algorithms, but the traditionary hierarchica l clustering method is based on global comparing, which only takes in Q clusteri n... Hierarchical clustering analysis based on statistic s is one of the most important mining algorithms, but the traditionary hierarchica l clustering method is based on global comparing, which only takes in Q clusteri ng while ignoring R clustering in practice, so it has some limitation especially when the number of sample and index is very large. Furthermore, because of igno ring the association between the different indexes, the clustering result is not good & true. In this paper, we present the model and the algorithm of two-level hierarchi cal clustering which integrates Q clustering with R clustering. Moreover, becaus e two-level hierarchical clustering is based on the respective clustering resul t of each class, the classification of the indexes directly effects on the a ccuracy of the final clustering result, how to appropriately classify the inde xes is the chief and difficult problem we must handle in advance. Although some literatures also have referred to the issue of the classificati on of the indexes, but the articles classify the indexes only according to their superficial signification, which is unscientific. The reasons are as follow s: First, the superficial signification of some indexes usually takes on different meanings and it is easy to be misapprehended by different person. Furthermore, t his classification method seldom make use of history data, the classification re sult is not so objective. Second, for some indexes, its superficial signification didn’t show any mean ings, so simply from the superficial signification, we can’t classify them to c ertain classes. Third, this classification method need the users have higher level knowledge of this field, otherwise it is difficult for the users to understand the signifi cation of some indexes, which sometimes is not available. So in this paper, to this question, we first use R clustering method to cluste ring indexes, dividing p dimension indexes into q classes, then adopt two-level clustering method to get the final result. Obviously, the classification result is more objective and accurate. Moreover, after the first step, we can get the relation of the different indexes and their interaction. We can also know under a certain class indexes, which samples can be clustering to a class. (These semi finished results sometimes are very useful.) The experiments also indicates the effective and accurate of the algorithms. And, the result of R clustering ca n be easily used for the later practice. 展开更多
关键词 data mining clustering hierarchical clustering R clustering Q clustering
下载PDF
Statistical Analysis of Abilities to Give Consent to Health Data Processing
7
作者 Antonella Massari Biagio Solarino +5 位作者 Paola Perchinunno Angela Maria D’Uggento Marcello Benevento Viviana D’Addosio Vittoria Claudia De Nicolò Samuela L’Abbate 《Applied Mathematics》 2024年第8期508-542,共35页
The recent pandemic crisis has highlighted the importance of the availability and management of health data to respond quickly and effectively to health emergencies, while respecting the fundamental rights of every in... The recent pandemic crisis has highlighted the importance of the availability and management of health data to respond quickly and effectively to health emergencies, while respecting the fundamental rights of every individual. In this context, it is essential to find a balance between the protection of privacy and the safeguarding of public health, using tools that guarantee transparency and consent to the processing of data by the population. This work, starting from a pilot investigation conducted in the Polyclinic of Bari as part of the Horizon Europe Seeds project entitled “Multidisciplinary analysis of technological tracing models of contagion: the protection of rights in the management of health data”, has the objective of promoting greater patient awareness regarding the processing of their health data and the protection of privacy. The methodology used the PHICAT (Personal Health Information Competence Assessment Tool) as a tool and, through the administration of a questionnaire, the aim was to evaluate the patients’ ability to express their consent to the release and processing of health data. The results that emerged were analyzed in relation to the 4 domains in which the process is divided which allows evaluating the patients’ ability to express a conscious choice and, also, in relation to the socio-demographic and clinical characteristics of the patients themselves. This study can contribute to understanding patients’ ability to give their consent and improve information regarding the management of health data by increasing confidence in granting the use of their data for research and clinical management. 展开更多
关键词 PRIVACY Health Data Consent Cluster analysis LOGIT
下载PDF
Study Progress Analysis of Effluent Quality Prediction in Activated Sludge Process Based on CiteSpace
8
作者 Kemeng Xue 《Journal of Water Resource and Protection》 CAS 2024年第6期450-465,共16页
In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge pr... In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge process in the wastewater treatment. By the way of trend map, keyword knowledge map, and co-cited knowledge map, specific visualization analysis and identification of the authors, institutions and regions were concluded. Furthermore, the topics and hotspots of water quality prediction in activated sludge process through the literature-co-citation-based cluster analysis and literature citation burst analysis were also determined, which not only reflected the historical evolution progress to a certain extent, but also provided the direction and insight of the knowledge structure of water quality prediction and activated sludge process for future research. 展开更多
关键词 Biological Model Effluent Quality Prediction Activated Sludge Process CITESPACE Knowledge Map Co-Citation Cluster analysis
下载PDF
Hierarchical Privacy Protection Model in Advanced Metering Infrastructure Based on Cloud and Fog Assistance
9
作者 Linghong Kuang Wenlong Shi Jing Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第8期3193-3219,共27页
The Advanced Metering Infrastructure(AMI),as a crucial subsystem in the smart grid,is responsible for measuring user electricity consumption and plays a vital role in communication between providers and consumers.Howe... The Advanced Metering Infrastructure(AMI),as a crucial subsystem in the smart grid,is responsible for measuring user electricity consumption and plays a vital role in communication between providers and consumers.However,with the advancement of information and communication technology,new security and privacy challenges have emerged for AMI.To address these challenges and enhance the security and privacy of user data in the smart grid,a Hierarchical Privacy Protection Model in Advanced Metering Infrastructure based on Cloud and Fog Assistance(HPPM-AMICFA)is proposed in this paper.The proposed model integrates cloud and fog computing with hierarchical threshold encryption,offering a flexible and efficient privacy protection solution that significantly enhances data security in the smart grid.The methodology involves setting user protection levels by processing missing data and utilizing fuzzy comprehensive analysis to evaluate user importance,thereby assigning appropriate protection levels.Furthermore,a hierarchical threshold encryption algorithm is developed to provide differentiated protection strategies for fog nodes based on user IDs,ensuring secure aggregation and encryption of user data.Experimental results demonstrate that HPPM-AMICFA effectively resists various attack strategies while minimizing time costs,thereby safeguarding user data in the smart grid. 展开更多
关键词 AMI cloud and fog assistance fuzzy comprehensive analysis hierarchical threshold encryption
下载PDF
Evolution and spatiotemporal analysis of earthquake public opinion based on social media data
10
作者 Chenyu Wang Yanjun Ye +2 位作者 Yingqiao Qiu Chen Li Meiqing Du 《Earthquake Science》 2024年第5期387-406,共20页
As critical conduits for the dissemination of online public opinion,social media platforms offer a timely and effective means for managing emergencies during major disasters,such as earthquakes.This study focuses on t... As critical conduits for the dissemination of online public opinion,social media platforms offer a timely and effective means for managing emergencies during major disasters,such as earthquakes.This study focuses on the analysis of online public opinions following the Maduo M7.4 earthquake in Qinghai Province and the Yangbi M6.4 earthquake in Yunnan Province.By collecting,cleaning,and organizing post-earthquake Sina Weibo(short for Weibo)data,we employed the Latent Dirichlet Allocation(LDA)model to extract information pertinent to public opinion on these earthquakes.This analysis included a comparison of the nature and temporal evolution of online public opinions related to both events.An emotion analysis,utilizing an emotion dictionary,categorized the emotional content of post-earthquake Weibo posts,facilitating a comparative study of the characteristics and temporal trends of online public emotions following the earthquakes.The findings were visualized using Geographic Information System(GIS)techniques.The analysis revealed certain commonalities in online public opinion following both earthquakes.Notably,the peak of online engagement occurred within the first 24 hours post-earthquake,with a rapid decline observed between 24 to 48 hours thereafter.The variation in popularity of online public opinion was linked to aftershock occurrences.Adjusted for population factors,online engagement in areas surrounding the earthquake sites and in Sichuan Province was significantly high.Initially dominated by feelings of“fear”and“surprise”,the public sentiment shifted towards a more positive outlook with the onset of rescue operations.However,distinctions in the online public response to each earthquake were also noted.Following the Yangbi earthquake,Yunnan Province reported the highest number of Weibo posts nationwide;in contrast,Qinghai Province ranked third post-Maduo earthquake,attributable to its smaller population size and extensive damage to communication infrastructure.This research offers a methodological approach for the analysis of online public opinion related to earthquakes,providing insights for the enhancement of post-disaster emergency management and public mental health support. 展开更多
关键词 internet public opinion topic clustering emotional analysis psychological crisis intervention
下载PDF
Composition Analysis and Identification of Ancient Glass Products Based on L1 Regularization Logistic Regression
11
作者 Yuqiao Zhou Xinyang Xu Wenjing Ma 《Applied Mathematics》 2024年第1期51-64,共14页
In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluste... In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics. 展开更多
关键词 Glass Composition L1 Regularization Logistic Regression Model K-Means clustering analysis Elbow Rule Parameter Verification
下载PDF
ARHCS (Automatic Rainfall Half-Life Cluster System): A Landslides Early Warning System (LEWS) Using Cluster Analysis and Automatic Threshold Definition
12
作者 Cassiano Antonio Bortolozo Luana Albertani Pampuch +8 位作者 Marcio Roberto Magalhães De Andrade Daniel Metodiev Adenilson Roberto Carvalho Tatiana Sussel Gonçalves Mendes Tristan Pryer Harideva Marturano Egas Rodolfo Moreda Mendes Isadora Araújo Sousa Jenny Power 《International Journal of Geosciences》 CAS 2024年第1期54-69,共16页
A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in vari... A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in various ways, but most often they are based on previous landslide data. This approach introduces several limitations. For instance, there is a requirement for the location to have been previously monitored in some way to have this type of information recorded. Another significant limitation is the need for information regarding the location and timing of incidents. Despite the current ease of obtaining location information (GPS, drone images, etc.), the timing of the event remains challenging to ascertain for a considerable portion of landslide data. Concerning rainfall monitoring, there are multiple ways to consider it, for instance, examining accumulations over various intervals (1 h, 6 h, 24 h, 72 h), as well as in the calculation of effective rainfall, which represents the precipitation that actually infiltrates the soil. However, in the vast majority of cases, both the thresholds and the rain monitoring approach are defined manually and subjectively, relying on the operators’ experience. This makes the process labor-intensive and time-consuming, hindering the establishment of a truly standardized and rapidly scalable methodology on a large scale. In this work, we propose a Landslides Early Warning System (LEWS) based on the concept of rainfall half-life and the determination of thresholds using Cluster Analysis and data inversion. The system is designed to be applied in extensive monitoring networks, such as the one utilized by Cemaden, Brazil’s National Center for Monitoring and Early Warning of Natural Disasters. 展开更多
关键词 Landslides Early Warning System (LEWS) Cluster analysis LANDSLIDES Brazil
下载PDF
Analysis of the Employment Situation of Non Private Enterprises in Various Regions of China
13
作者 Junyi Wang 《Open Journal of Applied Sciences》 2024年第1期131-144,共14页
In the past 30 years, Chinese enterprises have been a hot topic of discussion and concern among the general public in terms of economic and social status, ownership structure, business mechanism, and management level.... In the past 30 years, Chinese enterprises have been a hot topic of discussion and concern among the general public in terms of economic and social status, ownership structure, business mechanism, and management level. Solving the problem of employment for the people is an important prerequisite for their peaceful living and work, as well as a prerequisite and foundation for building a harmonious society. The employment situation of private enterprises has always been of great concern to the outside world, and these two major jobs have always occupied an important position in the employment field of China that cannot be ignored. With the establishment of the market economy system, individual and private enterprises have become important components of the socialist economy, making significant contributions to economic development and social progress. The rapid development of China’s economy, on the one hand, is the embodiment of the superiority of China’s socialist market economic system, and on the other hand, it is the role of the tertiary industry and private enterprises in promoting the national economy. Since the 1990s, China’s private enterprises have become a new economic growth point for local and even national countries, and are one of the important ways to arrange employment and achieve social stability. This paper studies the employment of private enterprises and individuals from the perspective of statistics, extracts relevant data from China statistical Yearbook, uses the relevant knowledge of statistics to process the data, obtains the conclusion and puts forward relevant constructive suggestions. 展开更多
关键词 Correlation analysis of Employment Numbers Factor analysis Principal Component analysis Cluster analysis
下载PDF
Incremental Linear Discriminant Analysis Dimensionality Reduction and 3D Dynamic Hierarchical Clustering WSNs
14
作者 G.Divya Mohana Priya M.Karthikeyan K.Murugan 《Computer Systems Science & Engineering》 SCIE EI 2022年第11期471-486,共16页
Optimizing the sensor energy is one of the most important concern in Three-Dimensional(3D)Wireless Sensor Networks(WSNs).An improved dynamic hierarchical clustering has been used in previous works that computes optimu... Optimizing the sensor energy is one of the most important concern in Three-Dimensional(3D)Wireless Sensor Networks(WSNs).An improved dynamic hierarchical clustering has been used in previous works that computes optimum clusters count and thus,the total consumption of energy is optimal.However,the computational complexity will be increased due to data dimension,and this leads to increase in delay in network data transmission and reception.For solving the above-mentioned issues,an efficient dimensionality reduction model based on Incremental Linear Discriminant Analysis(ILDA)is proposed for 3D hierarchical clustering WSNs.The major objective of the proposed work is to design an efficient dimensionality reduction and energy efficient clustering algorithm in 3D hierarchical clustering WSNs.This ILDA approach consists of four major steps such as data dimension reduction,distance similarity index introduction,double cluster head technique and node dormancy approach.This protocol differs from normal hierarchical routing protocols in formulating the Cluster Head(CH)selection technique.According to node’s position and residual energy,optimal cluster-head function is generated,and every CH is elected by this formulation.For a 3D spherical structure,under the same network condition,the performance of the proposed ILDA with Improved Dynamic Hierarchical Clustering(IDHC)is compared with Distributed Energy-Efficient Clustering(DEEC),Hybrid Energy Efficient Distributed(HEED)and Stable Election Protocol(SEP)techniques.It is observed that the proposed ILDA based IDHC approach provides better results with respect to Throughput,network residual energy,network lifetime and first node death round. 展开更多
关键词 LIFETIME energy optimization hierarchical routing protocol data transmission reduction incremental linear discriminant analysis(ILDA) three-dimensional(3D)space wireless sensor network(WSN)
下载PDF
Genetic Diversity and Clustering Analysis of 48Cultivars of Olea euyopaea L. 被引量:1
15
作者 宁德鲁 陈少瑜 +4 位作者 陈海云 李瑞 李勇杰 毛云玲 吴涛 《Agricultural Science & Technology》 CAS 2013年第9期1215-1219,共5页
Inter-simple sequence repeat(ISSR) molecular markers were applied to analyze the genetic diversity and clustering of 48 introduced and bred cultivars of Olea euyopaea L. Totally 106 DNA bands were amplified by 11 sc... Inter-simple sequence repeat(ISSR) molecular markers were applied to analyze the genetic diversity and clustering of 48 introduced and bred cultivars of Olea euyopaea L. Totally 106 DNA bands were amplified by 11 screened primers, including 99 polymorphic bands; the percentage of polymorphic loci was 93.40%, indicating a rich genetic diversity in Olea euyopaea L. germplasm resources. Based on Nei's genetic distances between various cultivars, a dendrogram of 48 cultivars of Olea euyopaea L. was constructed using unweighted pair-group(UPMGA)method,which showed that 48 cultivars were clustered into four main categories; 84.6% of native cultivars were clustered into two categories; most of introduced cultivars were clustered based on their sources and main usages but not on their geographic origins. This study will provide references for the utilization and further genetic improvement of Olea euyopaea L. germplasm resources. 展开更多
关键词 Olea euyopaea L. Genetic diversity clustering analysis
下载PDF
Clustering analysis algorithm for security supervising data based on semantic description in coal mines 被引量:1
16
作者 孟凡荣 周勇 夏士雄 《Journal of Southeast University(English Edition)》 EI CAS 2008年第3期354-357,共4页
In order to mine production and security information from security supervising data and to ensure security and safety involved in production and decision-making,a clustering analysis algorithm for security supervising... In order to mine production and security information from security supervising data and to ensure security and safety involved in production and decision-making,a clustering analysis algorithm for security supervising data based on a semantic description in coal mines is studied.First,the semantic and numerical-based hybrid description method of security supervising data in coal mines is described.Secondly,the similarity measurement method of semantic and numerical data are separately given and a weight-based hybrid similarity measurement method for the security supervising data based on a semantic description in coal mines is presented.Thirdly,taking the hybrid similarity measurement method as the distance criteria and using a grid methodology for reference,an improved CURE clustering algorithm based on the grid is presented.Finally,the simulation results of a security supervising data set in coal mines validate the efficiency of the algorithm. 展开更多
关键词 semantic description clustering analysis algorithm similarity measurement
下载PDF
Clustering Analysis on Large Grained Brassica napus Materials Based on the Optimized ACGM Markers
17
作者 俎峰 李静 +6 位作者 罗延青 赵凯琴 马芳 陈苇 王敬乔 李劲峰 董云松 《Agricultural Science & Technology》 CAS 2012年第11期2265-2268,共4页
[Objective] This study aimed to develop ACGM markers for the clustering analysis of large grained Brassica napus materials. [Method] A total of 44 pairs of ACGM primers were designed according to 18 genes related to A... [Objective] This study aimed to develop ACGM markers for the clustering analysis of large grained Brassica napus materials. [Method] A total of 44 pairs of ACGM primers were designed according to 18 genes related to Arabidopsis grain development and their homologous rape EST sequences. After electrophoresis, 18 pairs of ACGM primers were selected for the clustering analysis of 16 larger grained samples and four fine grained samples of rapeseed. [Result] PCR result showed that 2-6 specific bands were respectively amplified by each pair of primes, and all the bands were polymorphic and repeatable, suggesting that the optimized ACGM markers were useful for clustering analysis of B. napus species. Clustering analysis revealed that the 20 rapeseed samples were divided into three clusters A, B, and C at similarity coefficient 0.6. Then, the clusters A and B were further divided into five sub clusters A1, A2, A3, B1 and B2 at similarity coefficient 0.67. [Conclusion] This study will provide theoretical and practical values for rape breeding. 展开更多
关键词 Brassica napus Large grain clustering analysis ACGM marker
下载PDF
Study on Trace Elements in Rehmannia glutinosa Libosch. by Principal Component Analysis and Clustering Analysis
18
作者 申明金 陈丽 曹洪斌 《Agricultural Science & Technology》 CAS 2013年第12期1764-1768,共5页
[Objective] This study aimed to investigate the trace elements in Rehman- nia glutinosa Libosch. by using principal component analysis and clustering analysis. [Method] Principal component analysis and clustering anal... [Objective] This study aimed to investigate the trace elements in Rehman- nia glutinosa Libosch. by using principal component analysis and clustering analysis. [Method] Principal component analysis and clustering analysis of R. glutinosa medicinal materials from different sources were conducted with contents of six trace elements as indices. [Result] The principal component analysis could comprehen- sively evaluate the quality of R. glutinosa samples with objective results which was consistent with the results of clustering analysis. [Conclusion] Principal component analysis and clustering analysis methods can be used for the quality evaluation of Chinese medicinal materials with multiple indices. 展开更多
关键词 Rehmannia glutinosa Libosch. (Radix Rehmanniae) Trace elements Principal component analysis clustering analysis
下载PDF
Hierarchical hesitant fuzzy K-means clustering algorithm 被引量:21
19
作者 CHEN Na XU Ze-shui XIA Mei-mei 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2014年第1期1-17,共17页
Due to the limitation and hesitation in one's knowledge, the membership degree of an element to a given set usually has a few different values, in which the conventional fuzzy sets are invalid. Hesitant fuzzy sets ar... Due to the limitation and hesitation in one's knowledge, the membership degree of an element to a given set usually has a few different values, in which the conventional fuzzy sets are invalid. Hesitant fuzzy sets are a powerful tool to treat this case. The present paper focuses on investigating the clustering technique for hesitant fuzzy sets based on the K-means clustering algorithm which takes the results of hierarchical clustering as the initial clusters. Finally, two examples demonstrate the validity of our algorithm. 展开更多
关键词 90B50 68T10 62H30 Hesitant fuzzy set hierarchical clustering K-means clustering intuitionisitc fuzzy set
下载PDF
Clustering Structure Analysis in Time-Series Data With Density-Based Clusterability Measure 被引量:6
20
作者 Juho Jokinen Tomi Raty Timo Lintonen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第6期1332-1343,共12页
Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algor... Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algorithms force a structure in the data instead of discovering one.To avoid false structures in the relations of data,a novel clusterability assessment method called density-based clusterability measure is proposed in this paper.I measures the prominence of clustering structure in the data to evaluate whether a cluster analysis could produce a meaningfu insight to the relationships in the data.This is especially useful in time-series data since visualizing the structure in time-series data is hard.The performance of the clusterability measure is evalu ated against several synthetic data sets and time-series data sets which illustrate that the density-based clusterability measure can successfully indicate clustering structure of time-series data. 展开更多
关键词 clustering EXPLORATORY data analysis time-series UNSUPERVISED LEARNING
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部