In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared...In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared neighbors,most neighbor relationships can only handle single structural relationships,and the identification accuracy is low for datasets with multiple structures.In life,people’s first instinct for complex things is to divide them into multiple parts to complete.Partitioning the dataset into more sub-graphs is a good idea approach to identifying complex structures.Taking inspiration from this,we propose a novel neighbor method:Shared Natural Neighbors(SNaN).To demonstrate the superiority of this neighbor method,we propose a shared natural neighbors-based hierarchical clustering algorithm for discovering arbitrary-shaped clusters(HC-SNaN).Our algorithm excels in identifying both spherical clusters and manifold clusters.Tested on synthetic datasets and real-world datasets,HC-SNaN demonstrates significant advantages over existing clustering algorithms,particularly when dealing with datasets containing arbitrary shapes.展开更多
The strict and high-standard requirements for the safety and stability ofmajor engineering systems make it a tough challenge for large-scale finite element modal analysis.At the same time,realizing the systematic anal...The strict and high-standard requirements for the safety and stability ofmajor engineering systems make it a tough challenge for large-scale finite element modal analysis.At the same time,realizing the systematic analysis of the entire large structure of these engineering systems is extremely meaningful in practice.This article proposes a multilevel hierarchical parallel algorithm for large-scale finite element modal analysis to reduce the parallel computational efficiency loss when using heterogeneous multicore distributed storage computers in solving large-scale finite element modal analysis.Based on two-level partitioning and four-transformation strategies,the proposed algorithm not only improves the memory access rate through the sparsely distributed storage of a large amount of data but also reduces the solution time by reducing the scale of the generalized characteristic equation(GCEs).Moreover,a multilevel hierarchical parallelization approach is introduced during the computational procedure to enable the separation of the communication of inter-nodes,intra-nodes,heterogeneous core groups(HCGs),and inside HCGs through mapping computing tasks to various hardware layers.This method can efficiently achieve load balancing at different layers and significantly improve the communication rate through hierarchical communication.Therefore,it can enhance the efficiency of parallel computing of large-scale finite element modal analysis by fully exploiting the architecture characteristics of heterogeneous multicore clusters.Finally,typical numerical experiments were used to validate the correctness and efficiency of the proposedmethod.Then a parallel modal analysis example of the cross-river tunnel with over ten million degrees of freedom(DOFs)was performed,and ten-thousand core processors were applied to verify the feasibility of the algorithm.展开更多
In an automatic bobbin management system that simultaneously detects bobbin color and residual yarn,a composite texture segmentation and recognition operation based on an odd partial Gabor filter and multi-color space...In an automatic bobbin management system that simultaneously detects bobbin color and residual yarn,a composite texture segmentation and recognition operation based on an odd partial Gabor filter and multi-color space hierarchical clustering are proposed.Firstly,the parameter-optimized odd partial Gabor filter is used to distinguish bobbin and yarn texture,to explore Garbor parameters for yarn bobbins,and to accurately discriminate frequency characteristics of yarns and texture.Secondly,multi-color clustering segmentation using color spaces such as red,green,blue(RGB)and CIELUV(LUV)solves the problems of over-segmentation and segmentation errors,which are caused by the difficulty of accurately representing the complex and variable color information of yarns in a single-color space and the low contrast between the target and background.Finally,the segmented bobbin is combined with the odd partial Gabor’s edge recognition operator to further distinguish bobbin texture from yarn texture and locate the position and size of the residual yarn.Experimental results show that the method is robust in identifying complex texture,damaged and dyed bobbins,and multi-color yarns.Residual yarn identification can distinguish texture features and residual yarns well and it can be transferred to the detection and differentiation of complex texture,which is significantly better than traditional methods.展开更多
Graphical representation of hierarchical clustering results is of final importance in hierarchical cluster analysis of data. Unfortunately, almost all mathematical or statistical software may have a weak capability of...Graphical representation of hierarchical clustering results is of final importance in hierarchical cluster analysis of data. Unfortunately, almost all mathematical or statistical software may have a weak capability of showcasing such clustering results. Particularly, most of clustering results or trees drawn cannot be represented in a dendrogram with a resizable, rescalable and free-style fashion. With the “dynamic” drawing instead of “static” one, this research works around these weak functionalities that restrict visualization of clustering results in an arbitrary manner. It introduces an algorithmic solution to these functionalities, which adopts seamless pixel rearrangements to be able to resize and rescale dendrograms or tree diagrams. The results showed that the algorithm developed makes clustering outcome representation a really free visualization of hierarchical clustering and bioinformatics analysis. Especially, it possesses features of selectively visualizing and/or saving results in a specific size, scale and style (different views).展开更多
The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can i...The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can initially provide a solution to low prediction accuracy. However, theinterpretability of the model and the traceability of the results still warrantfurther investigation. Therefore, a processor performance prediction methodbased on interpretable hierarchical belief rule base (HBRB-I) and globalsensitivity analysis (GSA) is proposed. The method can yield more reliableprediction results. Evidence reasoning (ER) is firstly used to evaluate thehistorical data of the processor, followed by a performance prediction modelwith interpretability constraints that is constructed based on HBRB-I. Then,the whale optimization algorithm (WOA) is used to optimize the parameters.Furthermore, to test the interpretability of the performance predictionprocess, GSA is used to analyze the relationship between the input and thepredicted output indicators. Finally, based on the UCI database processordataset, the effectiveness and superiority of the method are verified. Accordingto our experiments, our prediction method generates more reliable andaccurate estimations than traditional models.展开更多
Hierarchical clustering analysis based on statistic s is one of the most important mining algorithms, but the traditionary hierarchica l clustering method is based on global comparing, which only takes in Q clusteri n...Hierarchical clustering analysis based on statistic s is one of the most important mining algorithms, but the traditionary hierarchica l clustering method is based on global comparing, which only takes in Q clusteri ng while ignoring R clustering in practice, so it has some limitation especially when the number of sample and index is very large. Furthermore, because of igno ring the association between the different indexes, the clustering result is not good & true. In this paper, we present the model and the algorithm of two-level hierarchi cal clustering which integrates Q clustering with R clustering. Moreover, becaus e two-level hierarchical clustering is based on the respective clustering resul t of each class, the classification of the indexes directly effects on the a ccuracy of the final clustering result, how to appropriately classify the inde xes is the chief and difficult problem we must handle in advance. Although some literatures also have referred to the issue of the classificati on of the indexes, but the articles classify the indexes only according to their superficial signification, which is unscientific. The reasons are as follow s: First, the superficial signification of some indexes usually takes on different meanings and it is easy to be misapprehended by different person. Furthermore, t his classification method seldom make use of history data, the classification re sult is not so objective. Second, for some indexes, its superficial signification didn’t show any mean ings, so simply from the superficial signification, we can’t classify them to c ertain classes. Third, this classification method need the users have higher level knowledge of this field, otherwise it is difficult for the users to understand the signifi cation of some indexes, which sometimes is not available. So in this paper, to this question, we first use R clustering method to cluste ring indexes, dividing p dimension indexes into q classes, then adopt two-level clustering method to get the final result. Obviously, the classification result is more objective and accurate. Moreover, after the first step, we can get the relation of the different indexes and their interaction. We can also know under a certain class indexes, which samples can be clustering to a class. (These semi finished results sometimes are very useful.) The experiments also indicates the effective and accurate of the algorithms. And, the result of R clustering ca n be easily used for the later practice.展开更多
The recent pandemic crisis has highlighted the importance of the availability and management of health data to respond quickly and effectively to health emergencies, while respecting the fundamental rights of every in...The recent pandemic crisis has highlighted the importance of the availability and management of health data to respond quickly and effectively to health emergencies, while respecting the fundamental rights of every individual. In this context, it is essential to find a balance between the protection of privacy and the safeguarding of public health, using tools that guarantee transparency and consent to the processing of data by the population. This work, starting from a pilot investigation conducted in the Polyclinic of Bari as part of the Horizon Europe Seeds project entitled “Multidisciplinary analysis of technological tracing models of contagion: the protection of rights in the management of health data”, has the objective of promoting greater patient awareness regarding the processing of their health data and the protection of privacy. The methodology used the PHICAT (Personal Health Information Competence Assessment Tool) as a tool and, through the administration of a questionnaire, the aim was to evaluate the patients’ ability to express their consent to the release and processing of health data. The results that emerged were analyzed in relation to the 4 domains in which the process is divided which allows evaluating the patients’ ability to express a conscious choice and, also, in relation to the socio-demographic and clinical characteristics of the patients themselves. This study can contribute to understanding patients’ ability to give their consent and improve information regarding the management of health data by increasing confidence in granting the use of their data for research and clinical management.展开更多
In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge pr...In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge process in the wastewater treatment. By the way of trend map, keyword knowledge map, and co-cited knowledge map, specific visualization analysis and identification of the authors, institutions and regions were concluded. Furthermore, the topics and hotspots of water quality prediction in activated sludge process through the literature-co-citation-based cluster analysis and literature citation burst analysis were also determined, which not only reflected the historical evolution progress to a certain extent, but also provided the direction and insight of the knowledge structure of water quality prediction and activated sludge process for future research.展开更多
The Advanced Metering Infrastructure(AMI),as a crucial subsystem in the smart grid,is responsible for measuring user electricity consumption and plays a vital role in communication between providers and consumers.Howe...The Advanced Metering Infrastructure(AMI),as a crucial subsystem in the smart grid,is responsible for measuring user electricity consumption and plays a vital role in communication between providers and consumers.However,with the advancement of information and communication technology,new security and privacy challenges have emerged for AMI.To address these challenges and enhance the security and privacy of user data in the smart grid,a Hierarchical Privacy Protection Model in Advanced Metering Infrastructure based on Cloud and Fog Assistance(HPPM-AMICFA)is proposed in this paper.The proposed model integrates cloud and fog computing with hierarchical threshold encryption,offering a flexible and efficient privacy protection solution that significantly enhances data security in the smart grid.The methodology involves setting user protection levels by processing missing data and utilizing fuzzy comprehensive analysis to evaluate user importance,thereby assigning appropriate protection levels.Furthermore,a hierarchical threshold encryption algorithm is developed to provide differentiated protection strategies for fog nodes based on user IDs,ensuring secure aggregation and encryption of user data.Experimental results demonstrate that HPPM-AMICFA effectively resists various attack strategies while minimizing time costs,thereby safeguarding user data in the smart grid.展开更多
As critical conduits for the dissemination of online public opinion,social media platforms offer a timely and effective means for managing emergencies during major disasters,such as earthquakes.This study focuses on t...As critical conduits for the dissemination of online public opinion,social media platforms offer a timely and effective means for managing emergencies during major disasters,such as earthquakes.This study focuses on the analysis of online public opinions following the Maduo M7.4 earthquake in Qinghai Province and the Yangbi M6.4 earthquake in Yunnan Province.By collecting,cleaning,and organizing post-earthquake Sina Weibo(short for Weibo)data,we employed the Latent Dirichlet Allocation(LDA)model to extract information pertinent to public opinion on these earthquakes.This analysis included a comparison of the nature and temporal evolution of online public opinions related to both events.An emotion analysis,utilizing an emotion dictionary,categorized the emotional content of post-earthquake Weibo posts,facilitating a comparative study of the characteristics and temporal trends of online public emotions following the earthquakes.The findings were visualized using Geographic Information System(GIS)techniques.The analysis revealed certain commonalities in online public opinion following both earthquakes.Notably,the peak of online engagement occurred within the first 24 hours post-earthquake,with a rapid decline observed between 24 to 48 hours thereafter.The variation in popularity of online public opinion was linked to aftershock occurrences.Adjusted for population factors,online engagement in areas surrounding the earthquake sites and in Sichuan Province was significantly high.Initially dominated by feelings of“fear”and“surprise”,the public sentiment shifted towards a more positive outlook with the onset of rescue operations.However,distinctions in the online public response to each earthquake were also noted.Following the Yangbi earthquake,Yunnan Province reported the highest number of Weibo posts nationwide;in contrast,Qinghai Province ranked third post-Maduo earthquake,attributable to its smaller population size and extensive damage to communication infrastructure.This research offers a methodological approach for the analysis of online public opinion related to earthquakes,providing insights for the enhancement of post-disaster emergency management and public mental health support.展开更多
In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluste...In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics.展开更多
A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in vari...A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in various ways, but most often they are based on previous landslide data. This approach introduces several limitations. For instance, there is a requirement for the location to have been previously monitored in some way to have this type of information recorded. Another significant limitation is the need for information regarding the location and timing of incidents. Despite the current ease of obtaining location information (GPS, drone images, etc.), the timing of the event remains challenging to ascertain for a considerable portion of landslide data. Concerning rainfall monitoring, there are multiple ways to consider it, for instance, examining accumulations over various intervals (1 h, 6 h, 24 h, 72 h), as well as in the calculation of effective rainfall, which represents the precipitation that actually infiltrates the soil. However, in the vast majority of cases, both the thresholds and the rain monitoring approach are defined manually and subjectively, relying on the operators’ experience. This makes the process labor-intensive and time-consuming, hindering the establishment of a truly standardized and rapidly scalable methodology on a large scale. In this work, we propose a Landslides Early Warning System (LEWS) based on the concept of rainfall half-life and the determination of thresholds using Cluster Analysis and data inversion. The system is designed to be applied in extensive monitoring networks, such as the one utilized by Cemaden, Brazil’s National Center for Monitoring and Early Warning of Natural Disasters.展开更多
In the past 30 years, Chinese enterprises have been a hot topic of discussion and concern among the general public in terms of economic and social status, ownership structure, business mechanism, and management level....In the past 30 years, Chinese enterprises have been a hot topic of discussion and concern among the general public in terms of economic and social status, ownership structure, business mechanism, and management level. Solving the problem of employment for the people is an important prerequisite for their peaceful living and work, as well as a prerequisite and foundation for building a harmonious society. The employment situation of private enterprises has always been of great concern to the outside world, and these two major jobs have always occupied an important position in the employment field of China that cannot be ignored. With the establishment of the market economy system, individual and private enterprises have become important components of the socialist economy, making significant contributions to economic development and social progress. The rapid development of China’s economy, on the one hand, is the embodiment of the superiority of China’s socialist market economic system, and on the other hand, it is the role of the tertiary industry and private enterprises in promoting the national economy. Since the 1990s, China’s private enterprises have become a new economic growth point for local and even national countries, and are one of the important ways to arrange employment and achieve social stability. This paper studies the employment of private enterprises and individuals from the perspective of statistics, extracts relevant data from China statistical Yearbook, uses the relevant knowledge of statistics to process the data, obtains the conclusion and puts forward relevant constructive suggestions.展开更多
Optimizing the sensor energy is one of the most important concern in Three-Dimensional(3D)Wireless Sensor Networks(WSNs).An improved dynamic hierarchical clustering has been used in previous works that computes optimu...Optimizing the sensor energy is one of the most important concern in Three-Dimensional(3D)Wireless Sensor Networks(WSNs).An improved dynamic hierarchical clustering has been used in previous works that computes optimum clusters count and thus,the total consumption of energy is optimal.However,the computational complexity will be increased due to data dimension,and this leads to increase in delay in network data transmission and reception.For solving the above-mentioned issues,an efficient dimensionality reduction model based on Incremental Linear Discriminant Analysis(ILDA)is proposed for 3D hierarchical clustering WSNs.The major objective of the proposed work is to design an efficient dimensionality reduction and energy efficient clustering algorithm in 3D hierarchical clustering WSNs.This ILDA approach consists of four major steps such as data dimension reduction,distance similarity index introduction,double cluster head technique and node dormancy approach.This protocol differs from normal hierarchical routing protocols in formulating the Cluster Head(CH)selection technique.According to node’s position and residual energy,optimal cluster-head function is generated,and every CH is elected by this formulation.For a 3D spherical structure,under the same network condition,the performance of the proposed ILDA with Improved Dynamic Hierarchical Clustering(IDHC)is compared with Distributed Energy-Efficient Clustering(DEEC),Hybrid Energy Efficient Distributed(HEED)and Stable Election Protocol(SEP)techniques.It is observed that the proposed ILDA based IDHC approach provides better results with respect to Throughput,network residual energy,network lifetime and first node death round.展开更多
Inter-simple sequence repeat(ISSR) molecular markers were applied to analyze the genetic diversity and clustering of 48 introduced and bred cultivars of Olea euyopaea L. Totally 106 DNA bands were amplified by 11 sc...Inter-simple sequence repeat(ISSR) molecular markers were applied to analyze the genetic diversity and clustering of 48 introduced and bred cultivars of Olea euyopaea L. Totally 106 DNA bands were amplified by 11 screened primers, including 99 polymorphic bands; the percentage of polymorphic loci was 93.40%, indicating a rich genetic diversity in Olea euyopaea L. germplasm resources. Based on Nei's genetic distances between various cultivars, a dendrogram of 48 cultivars of Olea euyopaea L. was constructed using unweighted pair-group(UPMGA)method,which showed that 48 cultivars were clustered into four main categories; 84.6% of native cultivars were clustered into two categories; most of introduced cultivars were clustered based on their sources and main usages but not on their geographic origins. This study will provide references for the utilization and further genetic improvement of Olea euyopaea L. germplasm resources.展开更多
In order to mine production and security information from security supervising data and to ensure security and safety involved in production and decision-making,a clustering analysis algorithm for security supervising...In order to mine production and security information from security supervising data and to ensure security and safety involved in production and decision-making,a clustering analysis algorithm for security supervising data based on a semantic description in coal mines is studied.First,the semantic and numerical-based hybrid description method of security supervising data in coal mines is described.Secondly,the similarity measurement method of semantic and numerical data are separately given and a weight-based hybrid similarity measurement method for the security supervising data based on a semantic description in coal mines is presented.Thirdly,taking the hybrid similarity measurement method as the distance criteria and using a grid methodology for reference,an improved CURE clustering algorithm based on the grid is presented.Finally,the simulation results of a security supervising data set in coal mines validate the efficiency of the algorithm.展开更多
[Objective] This study aimed to develop ACGM markers for the clustering analysis of large grained Brassica napus materials. [Method] A total of 44 pairs of ACGM primers were designed according to 18 genes related to A...[Objective] This study aimed to develop ACGM markers for the clustering analysis of large grained Brassica napus materials. [Method] A total of 44 pairs of ACGM primers were designed according to 18 genes related to Arabidopsis grain development and their homologous rape EST sequences. After electrophoresis, 18 pairs of ACGM primers were selected for the clustering analysis of 16 larger grained samples and four fine grained samples of rapeseed. [Result] PCR result showed that 2-6 specific bands were respectively amplified by each pair of primes, and all the bands were polymorphic and repeatable, suggesting that the optimized ACGM markers were useful for clustering analysis of B. napus species. Clustering analysis revealed that the 20 rapeseed samples were divided into three clusters A, B, and C at similarity coefficient 0.6. Then, the clusters A and B were further divided into five sub clusters A1, A2, A3, B1 and B2 at similarity coefficient 0.67. [Conclusion] This study will provide theoretical and practical values for rape breeding.展开更多
[Objective] This study aimed to investigate the trace elements in Rehman- nia glutinosa Libosch. by using principal component analysis and clustering analysis. [Method] Principal component analysis and clustering anal...[Objective] This study aimed to investigate the trace elements in Rehman- nia glutinosa Libosch. by using principal component analysis and clustering analysis. [Method] Principal component analysis and clustering analysis of R. glutinosa medicinal materials from different sources were conducted with contents of six trace elements as indices. [Result] The principal component analysis could comprehen- sively evaluate the quality of R. glutinosa samples with objective results which was consistent with the results of clustering analysis. [Conclusion] Principal component analysis and clustering analysis methods can be used for the quality evaluation of Chinese medicinal materials with multiple indices.展开更多
Due to the limitation and hesitation in one's knowledge, the membership degree of an element to a given set usually has a few different values, in which the conventional fuzzy sets are invalid. Hesitant fuzzy sets ar...Due to the limitation and hesitation in one's knowledge, the membership degree of an element to a given set usually has a few different values, in which the conventional fuzzy sets are invalid. Hesitant fuzzy sets are a powerful tool to treat this case. The present paper focuses on investigating the clustering technique for hesitant fuzzy sets based on the K-means clustering algorithm which takes the results of hierarchical clustering as the initial clusters. Finally, two examples demonstrate the validity of our algorithm.展开更多
Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algor...Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algorithms force a structure in the data instead of discovering one.To avoid false structures in the relations of data,a novel clusterability assessment method called density-based clusterability measure is proposed in this paper.I measures the prominence of clustering structure in the data to evaluate whether a cluster analysis could produce a meaningfu insight to the relationships in the data.This is especially useful in time-series data since visualizing the structure in time-series data is hard.The performance of the clusterability measure is evalu ated against several synthetic data sets and time-series data sets which illustrate that the density-based clusterability measure can successfully indicate clustering structure of time-series data.展开更多
基金This work was supported by Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-M202300502,KJQN201800539).
文摘In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared neighbors,most neighbor relationships can only handle single structural relationships,and the identification accuracy is low for datasets with multiple structures.In life,people’s first instinct for complex things is to divide them into multiple parts to complete.Partitioning the dataset into more sub-graphs is a good idea approach to identifying complex structures.Taking inspiration from this,we propose a novel neighbor method:Shared Natural Neighbors(SNaN).To demonstrate the superiority of this neighbor method,we propose a shared natural neighbors-based hierarchical clustering algorithm for discovering arbitrary-shaped clusters(HC-SNaN).Our algorithm excels in identifying both spherical clusters and manifold clusters.Tested on synthetic datasets and real-world datasets,HC-SNaN demonstrates significant advantages over existing clustering algorithms,particularly when dealing with datasets containing arbitrary shapes.
基金supported by the National Natural Science Foundation of China(Grant No.11772192).
文摘The strict and high-standard requirements for the safety and stability ofmajor engineering systems make it a tough challenge for large-scale finite element modal analysis.At the same time,realizing the systematic analysis of the entire large structure of these engineering systems is extremely meaningful in practice.This article proposes a multilevel hierarchical parallel algorithm for large-scale finite element modal analysis to reduce the parallel computational efficiency loss when using heterogeneous multicore distributed storage computers in solving large-scale finite element modal analysis.Based on two-level partitioning and four-transformation strategies,the proposed algorithm not only improves the memory access rate through the sparsely distributed storage of a large amount of data but also reduces the solution time by reducing the scale of the generalized characteristic equation(GCEs).Moreover,a multilevel hierarchical parallelization approach is introduced during the computational procedure to enable the separation of the communication of inter-nodes,intra-nodes,heterogeneous core groups(HCGs),and inside HCGs through mapping computing tasks to various hardware layers.This method can efficiently achieve load balancing at different layers and significantly improve the communication rate through hierarchical communication.Therefore,it can enhance the efficiency of parallel computing of large-scale finite element modal analysis by fully exploiting the architecture characteristics of heterogeneous multicore clusters.Finally,typical numerical experiments were used to validate the correctness and efficiency of the proposedmethod.Then a parallel modal analysis example of the cross-river tunnel with over ten million degrees of freedom(DOFs)was performed,and ten-thousand core processors were applied to verify the feasibility of the algorithm.
基金Key Research and Development Plan of Shaanxi Province,China(No.2023-YBGY-330)。
文摘In an automatic bobbin management system that simultaneously detects bobbin color and residual yarn,a composite texture segmentation and recognition operation based on an odd partial Gabor filter and multi-color space hierarchical clustering are proposed.Firstly,the parameter-optimized odd partial Gabor filter is used to distinguish bobbin and yarn texture,to explore Garbor parameters for yarn bobbins,and to accurately discriminate frequency characteristics of yarns and texture.Secondly,multi-color clustering segmentation using color spaces such as red,green,blue(RGB)and CIELUV(LUV)solves the problems of over-segmentation and segmentation errors,which are caused by the difficulty of accurately representing the complex and variable color information of yarns in a single-color space and the low contrast between the target and background.Finally,the segmented bobbin is combined with the odd partial Gabor’s edge recognition operator to further distinguish bobbin texture from yarn texture and locate the position and size of the residual yarn.Experimental results show that the method is robust in identifying complex texture,damaged and dyed bobbins,and multi-color yarns.Residual yarn identification can distinguish texture features and residual yarns well and it can be transferred to the detection and differentiation of complex texture,which is significantly better than traditional methods.
文摘Graphical representation of hierarchical clustering results is of final importance in hierarchical cluster analysis of data. Unfortunately, almost all mathematical or statistical software may have a weak capability of showcasing such clustering results. Particularly, most of clustering results or trees drawn cannot be represented in a dendrogram with a resizable, rescalable and free-style fashion. With the “dynamic” drawing instead of “static” one, this research works around these weak functionalities that restrict visualization of clustering results in an arbitrary manner. It introduces an algorithmic solution to these functionalities, which adopts seamless pixel rearrangements to be able to resize and rescale dendrograms or tree diagrams. The results showed that the algorithm developed makes clustering outcome representation a really free visualization of hierarchical clustering and bioinformatics analysis. Especially, it possesses features of selectively visualizing and/or saving results in a specific size, scale and style (different views).
基金This work is supported in part by the Postdoctoral Science Foundation of China under Grant No.2020M683736in part by the Teaching reform project of higher education in Heilongjiang Province under Grant No.SJGY20210456in part by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038.
文摘The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can initially provide a solution to low prediction accuracy. However, theinterpretability of the model and the traceability of the results still warrantfurther investigation. Therefore, a processor performance prediction methodbased on interpretable hierarchical belief rule base (HBRB-I) and globalsensitivity analysis (GSA) is proposed. The method can yield more reliableprediction results. Evidence reasoning (ER) is firstly used to evaluate thehistorical data of the processor, followed by a performance prediction modelwith interpretability constraints that is constructed based on HBRB-I. Then,the whale optimization algorithm (WOA) is used to optimize the parameters.Furthermore, to test the interpretability of the performance predictionprocess, GSA is used to analyze the relationship between the input and thepredicted output indicators. Finally, based on the UCI database processordataset, the effectiveness and superiority of the method are verified. Accordingto our experiments, our prediction method generates more reliable andaccurate estimations than traditional models.
文摘Hierarchical clustering analysis based on statistic s is one of the most important mining algorithms, but the traditionary hierarchica l clustering method is based on global comparing, which only takes in Q clusteri ng while ignoring R clustering in practice, so it has some limitation especially when the number of sample and index is very large. Furthermore, because of igno ring the association between the different indexes, the clustering result is not good & true. In this paper, we present the model and the algorithm of two-level hierarchi cal clustering which integrates Q clustering with R clustering. Moreover, becaus e two-level hierarchical clustering is based on the respective clustering resul t of each class, the classification of the indexes directly effects on the a ccuracy of the final clustering result, how to appropriately classify the inde xes is the chief and difficult problem we must handle in advance. Although some literatures also have referred to the issue of the classificati on of the indexes, but the articles classify the indexes only according to their superficial signification, which is unscientific. The reasons are as follow s: First, the superficial signification of some indexes usually takes on different meanings and it is easy to be misapprehended by different person. Furthermore, t his classification method seldom make use of history data, the classification re sult is not so objective. Second, for some indexes, its superficial signification didn’t show any mean ings, so simply from the superficial signification, we can’t classify them to c ertain classes. Third, this classification method need the users have higher level knowledge of this field, otherwise it is difficult for the users to understand the signifi cation of some indexes, which sometimes is not available. So in this paper, to this question, we first use R clustering method to cluste ring indexes, dividing p dimension indexes into q classes, then adopt two-level clustering method to get the final result. Obviously, the classification result is more objective and accurate. Moreover, after the first step, we can get the relation of the different indexes and their interaction. We can also know under a certain class indexes, which samples can be clustering to a class. (These semi finished results sometimes are very useful.) The experiments also indicates the effective and accurate of the algorithms. And, the result of R clustering ca n be easily used for the later practice.
文摘The recent pandemic crisis has highlighted the importance of the availability and management of health data to respond quickly and effectively to health emergencies, while respecting the fundamental rights of every individual. In this context, it is essential to find a balance between the protection of privacy and the safeguarding of public health, using tools that guarantee transparency and consent to the processing of data by the population. This work, starting from a pilot investigation conducted in the Polyclinic of Bari as part of the Horizon Europe Seeds project entitled “Multidisciplinary analysis of technological tracing models of contagion: the protection of rights in the management of health data”, has the objective of promoting greater patient awareness regarding the processing of their health data and the protection of privacy. The methodology used the PHICAT (Personal Health Information Competence Assessment Tool) as a tool and, through the administration of a questionnaire, the aim was to evaluate the patients’ ability to express their consent to the release and processing of health data. The results that emerged were analyzed in relation to the 4 domains in which the process is divided which allows evaluating the patients’ ability to express a conscious choice and, also, in relation to the socio-demographic and clinical characteristics of the patients themselves. This study can contribute to understanding patients’ ability to give their consent and improve information regarding the management of health data by increasing confidence in granting the use of their data for research and clinical management.
文摘In this paper, CiteSpace, a bibliometrics software, was adopted to collect research papers published on the Web of Science, which are relevant to biological model and effluent quality prediction in activated sludge process in the wastewater treatment. By the way of trend map, keyword knowledge map, and co-cited knowledge map, specific visualization analysis and identification of the authors, institutions and regions were concluded. Furthermore, the topics and hotspots of water quality prediction in activated sludge process through the literature-co-citation-based cluster analysis and literature citation burst analysis were also determined, which not only reflected the historical evolution progress to a certain extent, but also provided the direction and insight of the knowledge structure of water quality prediction and activated sludge process for future research.
基金This research was funded by the National Natural Science Foundation of China(Grant Number 61902069)Natural Science Foundation of Fujian Province of China(Grant Number 2021J011068)+1 种基金Research Initiation Fund Program of Fujian University of Technology(GY-S24002,GY-Z21048)Fujian Provincial Department of Science and Technology Industrial Guidance Project(Grant Number 2022H0025).
文摘The Advanced Metering Infrastructure(AMI),as a crucial subsystem in the smart grid,is responsible for measuring user electricity consumption and plays a vital role in communication between providers and consumers.However,with the advancement of information and communication technology,new security and privacy challenges have emerged for AMI.To address these challenges and enhance the security and privacy of user data in the smart grid,a Hierarchical Privacy Protection Model in Advanced Metering Infrastructure based on Cloud and Fog Assistance(HPPM-AMICFA)is proposed in this paper.The proposed model integrates cloud and fog computing with hierarchical threshold encryption,offering a flexible and efficient privacy protection solution that significantly enhances data security in the smart grid.The methodology involves setting user protection levels by processing missing data and utilizing fuzzy comprehensive analysis to evaluate user importance,thereby assigning appropriate protection levels.Furthermore,a hierarchical threshold encryption algorithm is developed to provide differentiated protection strategies for fog nodes based on user IDs,ensuring secure aggregation and encryption of user data.Experimental results demonstrate that HPPM-AMICFA effectively resists various attack strategies while minimizing time costs,thereby safeguarding user data in the smart grid.
基金funded by the Science Research Project of Hebei Education Department(No.BJK2023088).
文摘As critical conduits for the dissemination of online public opinion,social media platforms offer a timely and effective means for managing emergencies during major disasters,such as earthquakes.This study focuses on the analysis of online public opinions following the Maduo M7.4 earthquake in Qinghai Province and the Yangbi M6.4 earthquake in Yunnan Province.By collecting,cleaning,and organizing post-earthquake Sina Weibo(short for Weibo)data,we employed the Latent Dirichlet Allocation(LDA)model to extract information pertinent to public opinion on these earthquakes.This analysis included a comparison of the nature and temporal evolution of online public opinions related to both events.An emotion analysis,utilizing an emotion dictionary,categorized the emotional content of post-earthquake Weibo posts,facilitating a comparative study of the characteristics and temporal trends of online public emotions following the earthquakes.The findings were visualized using Geographic Information System(GIS)techniques.The analysis revealed certain commonalities in online public opinion following both earthquakes.Notably,the peak of online engagement occurred within the first 24 hours post-earthquake,with a rapid decline observed between 24 to 48 hours thereafter.The variation in popularity of online public opinion was linked to aftershock occurrences.Adjusted for population factors,online engagement in areas surrounding the earthquake sites and in Sichuan Province was significantly high.Initially dominated by feelings of“fear”and“surprise”,the public sentiment shifted towards a more positive outlook with the onset of rescue operations.However,distinctions in the online public response to each earthquake were also noted.Following the Yangbi earthquake,Yunnan Province reported the highest number of Weibo posts nationwide;in contrast,Qinghai Province ranked third post-Maduo earthquake,attributable to its smaller population size and extensive damage to communication infrastructure.This research offers a methodological approach for the analysis of online public opinion related to earthquakes,providing insights for the enhancement of post-disaster emergency management and public mental health support.
文摘In view of the composition analysis and identification of ancient glass products, L1 regularization, K-Means cluster analysis, elbow rule and other methods were comprehensively used to build logical regression, cluster analysis, hyper-parameter test and other models, and SPSS, Python and other tools were used to obtain the classification rules of glass products under different fluxes, sub classification under different chemical compositions, hyper-parameter K value test and rationality analysis. Research can provide theoretical support for the protection and restoration of ancient glass relics.
文摘A significant portion of Landslide Early Warning Systems (LEWS) relies on the definition of operational thresholds and the monitoring of cumulative rainfall for alert issuance. These thresholds can be obtained in various ways, but most often they are based on previous landslide data. This approach introduces several limitations. For instance, there is a requirement for the location to have been previously monitored in some way to have this type of information recorded. Another significant limitation is the need for information regarding the location and timing of incidents. Despite the current ease of obtaining location information (GPS, drone images, etc.), the timing of the event remains challenging to ascertain for a considerable portion of landslide data. Concerning rainfall monitoring, there are multiple ways to consider it, for instance, examining accumulations over various intervals (1 h, 6 h, 24 h, 72 h), as well as in the calculation of effective rainfall, which represents the precipitation that actually infiltrates the soil. However, in the vast majority of cases, both the thresholds and the rain monitoring approach are defined manually and subjectively, relying on the operators’ experience. This makes the process labor-intensive and time-consuming, hindering the establishment of a truly standardized and rapidly scalable methodology on a large scale. In this work, we propose a Landslides Early Warning System (LEWS) based on the concept of rainfall half-life and the determination of thresholds using Cluster Analysis and data inversion. The system is designed to be applied in extensive monitoring networks, such as the one utilized by Cemaden, Brazil’s National Center for Monitoring and Early Warning of Natural Disasters.
文摘In the past 30 years, Chinese enterprises have been a hot topic of discussion and concern among the general public in terms of economic and social status, ownership structure, business mechanism, and management level. Solving the problem of employment for the people is an important prerequisite for their peaceful living and work, as well as a prerequisite and foundation for building a harmonious society. The employment situation of private enterprises has always been of great concern to the outside world, and these two major jobs have always occupied an important position in the employment field of China that cannot be ignored. With the establishment of the market economy system, individual and private enterprises have become important components of the socialist economy, making significant contributions to economic development and social progress. The rapid development of China’s economy, on the one hand, is the embodiment of the superiority of China’s socialist market economic system, and on the other hand, it is the role of the tertiary industry and private enterprises in promoting the national economy. Since the 1990s, China’s private enterprises have become a new economic growth point for local and even national countries, and are one of the important ways to arrange employment and achieve social stability. This paper studies the employment of private enterprises and individuals from the perspective of statistics, extracts relevant data from China statistical Yearbook, uses the relevant knowledge of statistics to process the data, obtains the conclusion and puts forward relevant constructive suggestions.
文摘Optimizing the sensor energy is one of the most important concern in Three-Dimensional(3D)Wireless Sensor Networks(WSNs).An improved dynamic hierarchical clustering has been used in previous works that computes optimum clusters count and thus,the total consumption of energy is optimal.However,the computational complexity will be increased due to data dimension,and this leads to increase in delay in network data transmission and reception.For solving the above-mentioned issues,an efficient dimensionality reduction model based on Incremental Linear Discriminant Analysis(ILDA)is proposed for 3D hierarchical clustering WSNs.The major objective of the proposed work is to design an efficient dimensionality reduction and energy efficient clustering algorithm in 3D hierarchical clustering WSNs.This ILDA approach consists of four major steps such as data dimension reduction,distance similarity index introduction,double cluster head technique and node dormancy approach.This protocol differs from normal hierarchical routing protocols in formulating the Cluster Head(CH)selection technique.According to node’s position and residual energy,optimal cluster-head function is generated,and every CH is elected by this formulation.For a 3D spherical structure,under the same network condition,the performance of the proposed ILDA with Improved Dynamic Hierarchical Clustering(IDHC)is compared with Distributed Energy-Efficient Clustering(DEEC),Hybrid Energy Efficient Distributed(HEED)and Stable Election Protocol(SEP)techniques.It is observed that the proposed ILDA based IDHC approach provides better results with respect to Throughput,network residual energy,network lifetime and first node death round.
基金Supported by Key Project of New Product Development in Yunnan Province(2009BB006)~~
文摘Inter-simple sequence repeat(ISSR) molecular markers were applied to analyze the genetic diversity and clustering of 48 introduced and bred cultivars of Olea euyopaea L. Totally 106 DNA bands were amplified by 11 screened primers, including 99 polymorphic bands; the percentage of polymorphic loci was 93.40%, indicating a rich genetic diversity in Olea euyopaea L. germplasm resources. Based on Nei's genetic distances between various cultivars, a dendrogram of 48 cultivars of Olea euyopaea L. was constructed using unweighted pair-group(UPMGA)method,which showed that 48 cultivars were clustered into four main categories; 84.6% of native cultivars were clustered into two categories; most of introduced cultivars were clustered based on their sources and main usages but not on their geographic origins. This study will provide references for the utilization and further genetic improvement of Olea euyopaea L. germplasm resources.
基金The National Natural Science Foundation of China(No.50674086)Specialized Research Fund for the Doctoral Program of Higher Education(No.20060290508)the Postdoctoral Scientific Program of Jiangsu Province(No.0701045B)
文摘In order to mine production and security information from security supervising data and to ensure security and safety involved in production and decision-making,a clustering analysis algorithm for security supervising data based on a semantic description in coal mines is studied.First,the semantic and numerical-based hybrid description method of security supervising data in coal mines is described.Secondly,the similarity measurement method of semantic and numerical data are separately given and a weight-based hybrid similarity measurement method for the security supervising data based on a semantic description in coal mines is presented.Thirdly,taking the hybrid similarity measurement method as the distance criteria and using a grid methodology for reference,an improved CURE clustering algorithm based on the grid is presented.Finally,the simulation results of a security supervising data set in coal mines validate the efficiency of the algorithm.
基金Supported by the National Natural Science Foundation of China(30860147)Open Funds of National Key Laboratory of Crop Genetic Improvement(ZK200902)Natural Science Foundation of Yunnan Province(2011FB117)~~
文摘[Objective] This study aimed to develop ACGM markers for the clustering analysis of large grained Brassica napus materials. [Method] A total of 44 pairs of ACGM primers were designed according to 18 genes related to Arabidopsis grain development and their homologous rape EST sequences. After electrophoresis, 18 pairs of ACGM primers were selected for the clustering analysis of 16 larger grained samples and four fine grained samples of rapeseed. [Result] PCR result showed that 2-6 specific bands were respectively amplified by each pair of primes, and all the bands were polymorphic and repeatable, suggesting that the optimized ACGM markers were useful for clustering analysis of B. napus species. Clustering analysis revealed that the 20 rapeseed samples were divided into three clusters A, B, and C at similarity coefficient 0.6. Then, the clusters A and B were further divided into five sub clusters A1, A2, A3, B1 and B2 at similarity coefficient 0.67. [Conclusion] This study will provide theoretical and practical values for rape breeding.
基金Supported by Fund of Sichuan Provincial Administration of traditional Chinese Medicine(2008-12)~~
文摘[Objective] This study aimed to investigate the trace elements in Rehman- nia glutinosa Libosch. by using principal component analysis and clustering analysis. [Method] Principal component analysis and clustering analysis of R. glutinosa medicinal materials from different sources were conducted with contents of six trace elements as indices. [Result] The principal component analysis could comprehen- sively evaluate the quality of R. glutinosa samples with objective results which was consistent with the results of clustering analysis. [Conclusion] Principal component analysis and clustering analysis methods can be used for the quality evaluation of Chinese medicinal materials with multiple indices.
基金Supported by the National Natural Science Foundation of China(61273209)
文摘Due to the limitation and hesitation in one's knowledge, the membership degree of an element to a given set usually has a few different values, in which the conventional fuzzy sets are invalid. Hesitant fuzzy sets are a powerful tool to treat this case. The present paper focuses on investigating the clustering technique for hesitant fuzzy sets based on the K-means clustering algorithm which takes the results of hierarchical clustering as the initial clusters. Finally, two examples demonstrate the validity of our algorithm.
文摘Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algorithms force a structure in the data instead of discovering one.To avoid false structures in the relations of data,a novel clusterability assessment method called density-based clusterability measure is proposed in this paper.I measures the prominence of clustering structure in the data to evaluate whether a cluster analysis could produce a meaningfu insight to the relationships in the data.This is especially useful in time-series data since visualizing the structure in time-series data is hard.The performance of the clusterability measure is evalu ated against several synthetic data sets and time-series data sets which illustrate that the density-based clusterability measure can successfully indicate clustering structure of time-series data.