期刊文献+
共找到3,139篇文章
< 1 2 157 >
每页显示 20 50 100
Achieving the synergistic of strength and ductility in Mg-15Gd-1Zn-0.4Zr alloy with hierarchical structure
1
作者 Kun Jiang Minghang Zhou +3 位作者 Haoxin Wu Senzhong Liu Yujuan Wu Yong Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2937-2951,共15页
Currently,the hierarchical structure is one of the most effective means to enhance the strength and plasticity of metal materials,since the strain localization can be effectively delayed by the coordination of the uni... Currently,the hierarchical structure is one of the most effective means to enhance the strength and plasticity of metal materials,since the strain localization can be effectively delayed by the coordination of the unique microstructure.In this study,a hierarchical structure of Mg-15Gd-1Zn-0.4Zr(GZ151K)alloys containing grain,twin,and precipitation structural units was prepared by ultrasonic surface rolling process(USRP)and recrystallization annealing(RU).The results showed that the stress gradient generated by USRP formed a twin gradient structure,which will activate the twin-assisted precipitation(TAP)effect and twin-induced recrystallization(TIR)effect during RU.Then,the twin gradient structure transformed into a twin-precipitation gradient structure,and finally into a hierarchical structure with grain-twinprecipitation as the increasement of recrystallization degree.Besides,the dual gradient structure with twin and precipitation structural units had the highest strength and microhardness owing to the precipitation strengthening.However,the hierarchical structure with grain,twin,and precipitation structural units exhibited the most excellent combination of strength and plasticity under grain refinement and precipitation strengthening. 展开更多
关键词 Mg-Gd-Zn alloy hierarchical structure Microstructure evolution Mechanical properties Recrystallization kinetics
下载PDF
Nano-Au-decorated hierarchical porous cobalt sulfide derived from ZIF-67 toward optimized oxygen evolution catalysis:Important roles of microstructures and electronic modulation
2
作者 Hongyu Gong Guanliang Sun +6 位作者 Wenhua Shi Dongwei Li Xiangjun Zheng Huan Shi Xiu Liang Ruizhi Yang Changzhou Yuan 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期1-14,共14页
Enhancing both the number of active sites available and the intrinsic activity of Co-based electrocatalysts simultaneously is a desirable goal.Herein,a ZIF-67-derived hierarchical porous cobalt sulfide decorated by Au... Enhancing both the number of active sites available and the intrinsic activity of Co-based electrocatalysts simultaneously is a desirable goal.Herein,a ZIF-67-derived hierarchical porous cobalt sulfide decorated by Au nanoparticles(NPs)(denoted as HP-Au@CoxSy@ZIF-67)hybrid is synthesized by low-temperature sulfuration treatment.The well-defined macroporous-mesoporous-microporous structure is obtained based on the combination of polystyrene spheres,as-formed CoxSy nanosheets,and ZIF-67 frameworks.This novel three-dimensional hierarchical structure significantly enlarges the three-phase interfaces,accelerating the mass transfer and exposing the active centers for oxygen evolution reaction.The electronic structure of Co is modulated by Au through charge transfer,and a series of experiments,together with theoretical analysis,is performed to ascertain the electronic modulation of Co by Au.Meanwhile,HP-Au@CoxSy@ZIF-67 catalysts with different amounts of Au were synthesized,wherein Au and NaBH4 reductant result in an interesting“competition effect”to regulate the relative ratio of Co^(2+)/Co^(3+),and moderate Au assists the electrochemical performance to reach the highest value.Consequently,the optimized HP-Au@CoxSy@ZIF-67 exhibits a low overpotential of 340 mV at 10 mA cm^(-2)and a Tafel slope of 42 mV dec-1 for OER in 0.1 M aqueous KOH,enabling efficient water splitting and Zn-air battery performance.The work here highlights the pivotal roles of both microstructural and electronic modulation in enhancing electrocatalytic activity and presents a feasible strategy for designing and optimizing advanced electrocatalysts. 展开更多
关键词 Au nanoparticles cobalt sulfide electronic modulation hierarchical porous structure oxygen evolution reaction
下载PDF
Remarkably Enhanced Methane Sensing Performance at Room Temperature via Constructing a Self-Assembled Mulberry-Like ZnO/SnO_(2) Hierarchical Structure
3
作者 Xun Li Tian Tan +5 位作者 Wei Ji Wanling Zhou Yuwen Bao Xiaohong Xia Zhangfan Zeng Yun Gao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期337-344,共8页
Development of metal oxide semiconductors-based methane sensors with good response and low power consumption is one of the major challenges to realize the real-time monitoring of methane leakage.In this work,a self-as... Development of metal oxide semiconductors-based methane sensors with good response and low power consumption is one of the major challenges to realize the real-time monitoring of methane leakage.In this work,a self-assembled mulberry-like ZnO/SnO_(2)hierarchical structure is constructed by a two-step hydrothermal method.The resultant sensor works at room temperature with excellent response of~56.1%to 2000 ppm CH_(4)at 55%relative humidity.It is found that the strain induced at the ZnO/SnO_(2)interface greatly enhances the piezoelectric polarization on the ZnO surface and that the band bending results in the accumulation of chemically adsorbed O_(2)^(-)ions close to the interface,leading to significant improvement in the sensing performance of the methane gas sensor at room temperature. 展开更多
关键词 HETEROJUNCTION methane sensor oxygen vacancy piezoelectric polarization ZnO/SnO_(2)hierarchical structure
下载PDF
Structural Engineering of Hierarchical Magnetic/Carbon Nanocomposites via In Situ Growth for High-Efficient Electromagnetic Wave Absorption
4
作者 Xianyuan Liu Jinman Zhou +1 位作者 Ying Xue Xianyong Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期262-278,共17页
Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative stru... Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative structural design concepts is crucial for expanding the application field of electromagnetic wave absorption.Particularly,hierarchical structure engineering has emerged as a promising approach to enhance the physical and chemical properties of materials,providing immense potential for creating versatile electromagnetic wave absorption materials.Herein,an exceptional multi-dimensional hierarchical structure was meticulously devised,unleashing the full microwave attenuation capabilities through in situ growth,selfreduction,and multi-heterogeneous interface integration.The hierarchical structure features a three-dimensional carbon framework,where magnetic nanoparticles grow in situ on the carbon skeleton,creating a necklace-like structure.Furthermore,magnetic nanosheets assemble within this framework.Enhanced impedance matching was achieved by precisely adjusting component proportions,and intelligent integration of diverse interfaces bolstered dielectric polarization.The obtain Fe_(3)O_(4)-Fe nanoparticles/carbon nanofibers/Al-Fe_(3)O_(4)-Fe nanosheets composites demonstrated outstanding performance with a minimum reflection loss(RLmin)value of−59.3 dB and an effective absorption bandwidth(RL≤−10 dB)extending up to 5.6 GHz at 2.2 mm.These notable accomplishments offer fresh insights into the precision design of high-efficient electromagnetic wave absorption materials. 展开更多
关键词 Electromagnetic wave absorption hierarchical structure In situ growth Self-reduction
下载PDF
Integration of Multiple Heterointerfaces in a Hierarchical 0D@2D@1D Structure for Lightweight,Flexible,and Hydrophobic Multifunctional Electromagnetic Protective Fabrics 被引量:8
5
作者 Shuo Zhang Xuehua Liu +4 位作者 Chenyu Jia Zhengshuo Sun Haowen Jiang Zirui Jia Guanglei Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期241-264,共24页
The development of wearable multifunctional electromagnetic protective fabrics with multifunctional,low cost,and high efficiency remains a challenge.Here,inspired by the unique flower branch shape of“Thunberg’s mead... The development of wearable multifunctional electromagnetic protective fabrics with multifunctional,low cost,and high efficiency remains a challenge.Here,inspired by the unique flower branch shape of“Thunberg’s meadowsweet”in nature,a nanofibrous composite membrane with hierarchical structure was constructed.Integrating sophisticated 0D@2D@1D hierarchical structures with multiple heterointerfaces can fully unleash the multifunctional application potential of composite membrane.The targeted induction method was used to precisely regulate the formation site and morphology of the metal–organic framework precursor,and intelligently integrate multiple heterostructures to enhance dielectric polarization,which improves the impedance matching and loss mechanisms of the electromagnetic wave absorbing materials.Due to the synergistic enhancement of electrospinning-derived carbon nanofiber“stems”,MOF-derived carbon nanosheet“petals”and transition metal selenide nano-particle“stamens”,the CoxSey/NiSe@CNSs@CNFs(CNCC)composite membrane obtains a minimum reflection loss value(RL_(min))of-68.40 dB at 2.6 mm and a maximum effective absorption bandwidth(EAB)of 8.88 GHz at a thin thickness of 2.0 mm with a filling amount of only 5 wt%.In addition,the multi-component and hierarchical heterostructure endow the fibrous membrane with excellent flexibility,water resistance,thermal management,and other multifunctional properties.This work provides unique perspectives for the precise design and rational application of multifunctional fabrics. 展开更多
关键词 Electrostatic spinning MOFs Bimetallic selenide hierarchical structures Multiple heterointerfaces Electromagnetic wave absorption
下载PDF
Advancing the pressure sensing performance of conductive CNT/PDMS composite film by constructing a hierarchical-structured surface 被引量:2
6
作者 Ye Zhao Taoyu Shen +6 位作者 Minyue Zhang Rui Yin Yanjun Zheng Hu Liu Hongling Sun Chuntai Liu Changyu Shen 《Nano Materials Science》 EI CAS CSCD 2023年第4期343-350,共8页
Flexible pressure sensors have attracted wide attention due to their applications to electronic skin,health monitoring,and human-machine interaction.However,the tradeoff between their high sensitivity and wide respons... Flexible pressure sensors have attracted wide attention due to their applications to electronic skin,health monitoring,and human-machine interaction.However,the tradeoff between their high sensitivity and wide response range remains a challenge.Inspired by human skin,we select commercial silicon carbide sandpaper as a template to fabricate carbon nanotube(CNT)/polydimethylsiloxane(PDMS)composite film with a hierarchical structured surface(h-CNT/PDMS)through solution blending and blade coating and then assemble the h-CNT/PDMS composite film with interdigitated electrodes and polyurethane(PU)scotch tape to obtain an h-CNT/PDMS-based flexible pressure sensor.Based on in-situ optical images and finite element analysis,the significant compressive contact effect between the hierarchical structured surface of h-CNT/PDMS and the interdigitated electrode leads to enhanced pressure sensitivity and a wider response range(0.1661 kPa^(-1),0.4574 kPa^(-1)and 0.0989 kPa^(-1)in the pressure range of 0–18 kPa,18–133 kPa and 133–300 kPa)compared with planar CNT/PDMS composite film(0.0066 kPa^(-1)in the pressure range of 0–240 kPa).The prepared pressure sensor displays rapid response/recovery time,excellent stability,durability,and stable response to different loading modes(bending and torsion).In addition,our pressure sensor can be utilized to accurately monitor and discriminate various stimuli ranging from human motions to pressure magnitude and spatial distribution.This study supplies important guidance for the fabrication of flexible pressure sensors with superior sensing performance in next-generation wearable electronic devices. 展开更多
关键词 Flexible pressure sensor hierarchical structure POLYDIMETHYLSILOXANE Carbon nanotubes Electronic skin
下载PDF
A hierarchically structured tin-cobalt composite with an enhanced electronic effect for high-performance CO_(2) electroreduction in a wide potential range 被引量:2
7
作者 Xingxing Jiang Xuan Li +5 位作者 Yan Kong Chen Deng Xiaojie Li Qi Hu Hengpan Yang Chuanxin He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期462-469,I0012,共9页
Earth-abundant and nontoxic Sn-based materials have been regarded as promising catalysts for the electrochemical conversion of CO_(2)to C1 products,e.g.,CO and formate.However,it is still difficult for Snbased materia... Earth-abundant and nontoxic Sn-based materials have been regarded as promising catalysts for the electrochemical conversion of CO_(2)to C1 products,e.g.,CO and formate.However,it is still difficult for Snbased materials to obtain satisfactory performance at low-to-moderate overpotentials.Herein,a simple and facile electrospinning technique is utilized to prepare a composite of a bimetallic Sn-Co oxide/carbon matrix with a hollow nanotube structure(Sn Co-HNT).Sn Co-HNT can maintain>90%faradaic efficiencies for C1 products within a wide potential range from-0.6 VRHE to-1.2 VRHE,and a highest 94.1%selectivity towards CO in an H-type cell.Moreover,a 91.2%faradaic efficiency with a 241.3 m A cm^(-2)partial current density for C1 products could be achieved using a flow cell.According to theoretical calculations,the fusing of Sn/Co oxides on the carbon matrix accelerates electron transfer at the atomic level,causing electron deficiency of Sn centers and reversible variation between Co^(2+)and Co^(3+)centers.The synergistic effect of the Sn/Co composition improves the electron affinity of the catalyst surface,which is conducive to the adsorption and stabilization of key intermediates and eventually increases the catalytic activity in CO_(2)electroreduction.This study could provide a new strategy for the construction of oxide-derived catalysts for CO_(2)electroreduction. 展开更多
关键词 hierarchic structure Tin-cobalt bimetallic oxide Electronic effect CO_(2)electroreduction Wide potential range
下载PDF
Constructing a hollow core-shell structure of RuO_(2) wrapped by hierarchical porous carbon shell with Ru NPs loading for supercapacitor
8
作者 Lianlian Zhao Fufu Di +2 位作者 Xiaonan Wang Sumbal Farid Suzhen Ren 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期93-100,共8页
Hollow core-shell structure nanomaterials have been broadly used in energy storage, catalysis, reactor,and other fields due to their unique characteristics, including the synergy between different materials,a large sp... Hollow core-shell structure nanomaterials have been broadly used in energy storage, catalysis, reactor,and other fields due to their unique characteristics, including the synergy between different materials,a large specific surface area, small density, large charge carrying capacity and so on. However, their synthesis processes were mostly complicated, and few researches reported one-step encapsulation of different valence states of precious metals in carbon-based materials. Hence, a novel hollow core-shell nanostructure electrode material, RuO_(2)@Ru/HCs, with a lower mass of ruthenium to reduce costs was constructed by one-step hydrothermal method with hard template and co-assembled strategy, consisting of RuO_(2) core and ruthenium nanoparticles(Ru NPs) in carbon shell. The Ru NPs were uniformly assembled in the carbon layer, which not only improved the electronic conductivity but also provided more active centers to enhance the pseudocapacitance. The RuO_(2) core further enhanced the material’s energy storage capacity. Excellent capacitance storage(318.5 F·g^(-1)at 0.5 A·g^(-1)), rate performance(64.4%) from 0.5 A·g^(-1)to 20 A·g^(-1), and cycling stability(92.3% retention after 5000 cycles) were obtained by adjusting Ru loading to 0.92%(mass). It could be attributed to the wider pore size distribution in the micropores which increased the transfer of electrons and protons. The symmetrical supercapacitor device based on RuO_(2)@Ru/HCs could successfully light up the LED lamp. Therefore, our work verified that interfacial modification of RuO_(2) and carbon could bring attractive insights into energy density for nextgeneration supercapacitors. 展开更多
关键词 Ruthenium nanoparticles Ruthenium oxide Hollow carbon sphere shell hierarchical pore structure Silica template Hydrothermal method
下载PDF
A hierarchical salt-rejection strategy for sustainable and high-efficiency solar-driven desalination
9
作者 Zhengyi Mao Xuliang Chen +7 位作者 Yingxian Chen Junda Shen Jianpan Huang Yuhan Chen Xiaoguang Duan Yicheng Han Kannie Wai Yan Chan Jian LU 《Nano Materials Science》 EI CAS CSCD 2024年第1期38-43,共6页
Solar steam generation(SSG)is widely regarded as one of the most sustainable technologies for seawater desalination.However,salt fouling severely compromises the evaporation performance and lifetime of evaporators,lim... Solar steam generation(SSG)is widely regarded as one of the most sustainable technologies for seawater desalination.However,salt fouling severely compromises the evaporation performance and lifetime of evaporators,limiting their practical applications.Herein,we propose a hierarchical salt-rejection(HSR)strategy to prevent salt precipitation during long-term evaporation while maintaining a rapid evaporation rate,even in high-salinity brine.The salt diffusion process is segmented into three steps—insulation,branching diffusion,and arterial transport—that significantly enhance the salt-resistance properties of the evaporator.Moreover,the HSR strategy overcomes the tradeoff between salt resistance and evaporation rate.Consequently,a high evaporation rate of 2.84 kg m^(-2) h^(-1),stable evaporation for 7 days cyclic tests in 20 wt%NaCl solution,and continuous operation for 170 h in natural seawater under 1 sun illumination were achieved.Compared with control evaporators,the HSR evaporator exhibited a>54%enhancement in total water evaporation mass during 24 h continuous evaporation in 20 wt%salt water.Furthermore,a water collection device equipped with the HSR evaporator realized a high water purification rate(1.1 kg m^(-2) h^(-1)),highlighting its potential for agricultural applications. 展开更多
关键词 Solar water evaporation 3D printing Salt-rejection hierarchical structures High efficiency
下载PDF
Graphene Aerogel Composites with Self‑Organized Nanowires‑Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption
10
作者 Xiao You Huiying Ouyang +6 位作者 Ruixiang Deng Qiuqi Zhang Zhenzhong Xing Xiaowu Chen Qingliang Shan Jinshan Yang Shaoming Dong 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期533-547,共15页
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h... With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h. 展开更多
关键词 hierarchical porous structure Interface High-temperature resistance Graphene aerogel composites Electromagnetic wave absorption
下载PDF
Effects of hierarchical structure on the performance of tin oxide-supported platinum catalyst for room-temperature formaldehyde oxidation 被引量:6
11
作者 段媛媛 宋少青 +2 位作者 程蓓 余家国 姜传佳 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期199-206,共8页
Flower-like tin oxide-supported platinum(Pt/SnOx) with a hierarchical structure was synthesized by a hydrothermal method and characterized by XRD,SEM,TEM,high resolution TEM,XPS and nitrogen adsorption.The flower-li... Flower-like tin oxide-supported platinum(Pt/SnOx) with a hierarchical structure was synthesized by a hydrothermal method and characterized by XRD,SEM,TEM,high resolution TEM,XPS and nitrogen adsorption.The flower-like Pt/SnOx microspheres of 1 μm in diameter were composed of staggered petal-like nanosheets with a thickness of 20 nm.Pt nanoparticles(NPs) of 2-3 nm were well dispersed on the SnOx nanosheets.The catalyst was tested in the catalytic oxidation of gaseous formaldehyde(HCHO) at room temperature,and exhibited enhanced activity compared to Pt NPs supported on commercial SnO and ground SnOx.HCHO removal of 87%was achieved over the hierarchical Pt/SnOx after 1 h of reaction,which was 1.5 times that over the ground SnOx-supported Pt(Pt/g-SnOx),and the high activity was maintained after six recycles,showing the high stability of this catalyst.HCHO decomposition kinetics was modeled as a second order reaction.The reaction rate constant for Pt/SnOx was 5.6 times higher than Pt/g-SnOx.The hierarchical pore structure was beneficial for the diffusion and adsorption of HCHO molecules,and the highly dispersed Pt NPs on the SnOx nanosheets were the active sites for the oxidative decomposition of HCHO into CO2 and H2O.This study provided a promising approach for designing efficient catalysts for indoor HCHO removal at ambient temperature. 展开更多
关键词 Formaldehyde catalytic oxidation Room temperature Tin oxide PLATINUM hierarchical structure FLOWER-LIKE
下载PDF
A Novel Hierarchical Porous 3D Structured Vanadium Nitride/Carbon Membranes for High-performance Supercapacitor Negative Electrodes 被引量:13
12
作者 Yage Wu Yunlong Yang +4 位作者 Xiaoning Zhao Yongtao Tan Ying Liu Zhen Wang Fen Ran 《Nano-Micro Letters》 SCIE EI CAS 2018年第4期81-91,共11页
Transition-metal nitrides exhibit wide potential windows and good electrochemical performance, but usually experience imbalanced practical applications in the energy storage field due to aggregation, poor circulation ... Transition-metal nitrides exhibit wide potential windows and good electrochemical performance, but usually experience imbalanced practical applications in the energy storage field due to aggregation, poor circulation stability, and complicated syntheses. In this study, a novel and simple multiphase polymeric strategy was developed to fabricate hybrid vanadium nitride/carbon(VN/C) membranes for supercapacitor negative electrodes, in which VN nanoparticles were uniformly distributed in the hierarchical porous carbon 3D networks. The supercapacitor negative electrode based on VN/C membranes exhibited a high specific capacitance of 392.0 F g^(-1) at 0.5 A g^(-1) and an excellent rate capability with capacitance retention of 50.5% at 30 A g^(-1). For the asymmetric device fabricated using Ni(OH)_2//VN/C membranes, a high energy density of 43.0 Wh kg^(-1) at a power density of800 W kg^(-1) was observed. Moreover, the device also showed good cycling stability of 82.9% at a current density of 1.0 A g^(-1) after 8000 cycles. This work may throw a light on simply the fabrication of other high-performance transition-metal nitridebased supercapacitor or other energy storage devices. 展开更多
关键词 SUPERCAPACITORS Vanadium nitride/carbon 3D network hierarchical porous structure
下载PDF
Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell 被引量:4
13
作者 Jingru Song Cuncai Fan +1 位作者 Hansong Ma Yueguang Wei 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第3期364-372,共9页
In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated bioma- terial is Hyriopsis cumingii, a typical limnetic ... In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated bioma- terial is Hyriopsis cumingii, a typical limnetic shell, which consists of two different structural layers, a prismatic "pillar" structure and a nacreous "brick and mortar" structure. The prismatic layer looks like a "pillar forest" with variationsection pillars sized on the order of several tens of microns. The nacreous material looks like a "brick wall" with bricks sized on the order of several microns. Both pillars and bricks are composed of nanoparticles. The mechanical properties of the hierarchical biomaterial are measured by using the nanoindentation test. Hardness and modulus are measured for both the nacre layer and the prismatic layer, respectively. The nanoindentation size effects for the hierarchical structural materials are investigated experimentally. The results show that the prismatic nanostructured material has a higher stiffness and hardness than the nacre nanostructured material. In addition, the nanoindentation size effects for the hierarchical structural materials are described theoretically, by using the trans-scale mechanics theory considering both strain gradient effect and the surface/interface effect. The modeling results are consistent with experimental ones. 展开更多
关键词 Biomaterial hierarchical structure - Mechan-ical property Nanoindentation size effect Trans-scalemechanics
下载PDF
One-dimensional ZnS-based Hetero-,Core/shell and Hierarchical Nanostructures 被引量:3
14
作者 Ujjal K.Gautam Yoshio BANDO Dmitri GOLBERG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第4期520-528,共9页
A focus of the current nanotechnology has shifted from routine fabrication of nanostructures to designing functional electronic devices and realizing their immense potentials for applications. Due to infusion of multi... A focus of the current nanotechnology has shifted from routine fabrication of nanostructures to designing functional electronic devices and realizing their immense potentials for applications. Due to infusion of multi-functionality into a single system, the utilization of hetero-, core/shell and hierarchical nanostructures has become the key issue for building such devices. ZnS, due to its direct wide bandgap, high index of refraction, high transparency in the visible range and intrinsic polarity, is one of the most useful semiconductors for a wide range of electronics applications. This article provides a dense review of the state-of-the-art research activities in one-dimensional (1D) ZnS-based hetero-, core/shell and hierarchical nanostructures. The particular emphasis is put on their syntheses and applications. 展开更多
关键词 HETEROstructureS Core/shell hierarchical structures ZNS NANODEVICES
下载PDF
Nitrogen and sulfur co-doped graphene aerogel with hierarchically porous structure for high-performance supercapacitors 被引量:7
15
作者 Zhiwei Lu Xiaochao Xu +3 位作者 Yujuan Chen Xiaohui Wang Li Sun Kelei Zhuo 《Green Energy & Environment》 CSCD 2020年第1期69-75,共7页
Supercapacitors with unique performance have been widely utilized in many fields. Herein, we report a nitrogen and sulfur co-doped graphene aerogel(N/S-GA-2) prepared using a low toxic precursor for high-performance s... Supercapacitors with unique performance have been widely utilized in many fields. Herein, we report a nitrogen and sulfur co-doped graphene aerogel(N/S-GA-2) prepared using a low toxic precursor for high-performance supercapacitors. The as-obtained material possesses a hierarchically porous structure and a large number of electrochemical active sites. At a current density of 1 Ag^-1, the specific capacitance of the N/S-GA-2 for supercapacitors with the ionic liquid as the electrolyte is 169.4 Fg^-1, and the corresponding energy density is 84.5 Wh kg^-1.At a power density of 8.9 k W kg^-1, the energy density can reach up to 75.7 Wh kg^-1, showing that the N/S-GA-2 has an excellent electrochemical performance. Consequently, the N/S-GA-2 can be used as a promising candidate of electrode materials for supercapacitors with high power density and high energy density. 展开更多
关键词 Graphene aerogel hierarchically porous structure SUPERCAPACITOR Ionic liquid
下载PDF
Tuning Metallic Co0.85Se Quantum Dots/Carbon Hollow Polyhedrons with Tertiary Hierarchical Structure for High-Performance Potassium Ion Batteries 被引量:7
16
作者 Zhiwei Liu Kun Han +7 位作者 Ping Li Wei Wang Donglin He Qiwei Tan Leying Wang Yang Li Mingli Qin Xuanhui Qu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期660-673,共14页
Potassium-ion batteries(KIBs)are a potential candidate to lithium-ion batteries(LIBs)but possess unsatisfactory capacity and rate properties.Herein,the metallic cobalt selenide quantum dots(Co0.85Se-QDs)encapsulated i... Potassium-ion batteries(KIBs)are a potential candidate to lithium-ion batteries(LIBs)but possess unsatisfactory capacity and rate properties.Herein,the metallic cobalt selenide quantum dots(Co0.85Se-QDs)encapsulated in mesoporous carbon matrix were designed via a direct hydrothermal method.Specifically,the cobalt selenide/carbon composite(Co0.85Se-QDs/C)possesses tertiary hierarchical structure,which is the primary quantum dots,the secondary petals flake,and the tertiary hollow micropolyhedron framework.Co0.85Se-QDs are homogenously embedded into the carbon petals flake,which constitute the hollow polyhedral framework.This unique structure can take the advantages of both nanoscale and microscale features:Co0.85Se-QDs can expand in a multidimensional and ductile carbon matrix and reduce the K-intercalation stress in particle dimensions;the micropetals can restrain the agglomeration of active materials and promote the transportation of potassium ion and electron.In addition,the hollow carbon framework buffers volume expansion,maintains the structural integrity,and increases the electronic conductivity.Benefiting from this tertiary hierarchical structure,outstanding K-storage performance(402 mAh g?1 after 100 cycles at 50 mA g?1)is obtained when Co0.85Se-QDs/C is used as KIBs anode.More importantly,the selenization process in this work is newly reported and can be generally extended to prepare other quantum dots encapsulated in edge-limited frameworks for excellent energy storage. 展开更多
关键词 Cobalt SELENIDES Quantum DOTS Potassium-ion batteries TERTIARY hierarchical structure HOLLOW dodecahedron
下载PDF
Hydrogen etching induced hierarchical meso/micro-pore structure with increased active density to boost ORR performance of Fe-N-C catalyst 被引量:4
17
作者 Liqin Gao Meiling Xiao +3 位作者 Zhao Jin Changpeng Liu Junjie Ge Wei Xing 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第8期17-23,I0002,共8页
Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the ac... Rational regulation on pore structure and active site density plays critical roles in enhancing the performance of Fe-N-C catalysts. As the microporous structure of the carbon substrate is generally regarded as the active site hosts, its hostility to electron/mass transfer could lead to the incomplete fulfillment of the catalytic activity. Besides, the formation of inactive metallic Fe particles during the conventional catalyst synthesis could also decrease the active site density and complicate the identification of real active site. Herein, we developed a facial hydrogen etching methodology to yield single site Fe-N-C catalysts featured with micro/mesoporous hierarchical structure. The hydrogen concentration in pyrolysis process was designated to effectively regulate the pore structure and active site density of the resulted catalysts.The optimized sample achieves excellent ORR catalytic performance with an ultralow H2O2 yield(1%)and superb stability over 10,000 cycles. Our finding provides new thoughts for the rational design of hierarchically porous carbon-based materials and highly promising non-precious metal ORR catalysts. 展开更多
关键词 hierarchical meso/micro-pore structure HYDROGEN ETCHING Single site Fe-N-C catalysts Carbon-nitrogen-coordinated iron(FeN4) Oxygen reduction reaction
下载PDF
A novel 300 kW arc plasma inverter system based on hierarchical controlled building block structure 被引量:4
18
作者 王振民 黄石生 《China Welding》 EI CAS 2008年第4期12-16,共5页
To date, the high power arc plasma technology is widely used. A next generation high power arc plasma system based on building block structure is presented. The whole arc plasma inverter system is composed of 12 paral... To date, the high power arc plasma technology is widely used. A next generation high power arc plasma system based on building block structure is presented. The whole arc plasma inverter system is composed of 12 paralleled units to increase the system output capability. The hierarchical control system is adopted to improve the reliability and flexibility of the high power arc plasma inverter. To ensure the reliable turn on and off of the IGBT module in each building block unit, a special pulse drive circuit is designed by using pulse transformer. The experimental result indicates that the high power arc plasma inverter system can transfer 300 kW arc plasma energy reliably with high efficiency. 展开更多
关键词 PLASMA plasma inverter hierarchical system pulse drive circuit building block structure
下载PDF
MULTI-HIERARCHICAL STRUCTURE AND JUMP OF TEMPERATUREFOR THE GLOBE, CHINA AND YUNNAN OVER THE PAST 100 YEARS 被引量:2
19
作者 尤卫红 段旭 +1 位作者 邓自旺 伍从斌 《Journal of Tropical Meteorology》 SCIE 1999年第1期106-112,共7页
An analysis has been conducted of the multi-hierarchical structure and jump of temperature variation for the globe, China and Yunnan Province over the past 100 years using an auto-adaptive, multi-resolution data filte... An analysis has been conducted of the multi-hierarchical structure and jump of temperature variation for the globe, China and Yunnan Province over the past 100 years using an auto-adaptive, multi-resolution data filter set up in You, Lin and Deng (1997). The result is shown below in three aspects. (l1 The variation of global temperature in this period is marked by warming on a large scale and can be divided into three stages of being cold (prior to 1919), warm (between 1920 and 1978) and warmer (since 1 979). Well-defined jumps are with the variation in correspondence with the hierarchical evolution on such scale, occurring in 1920 and 1979 when there is the most substantial jump towards warming. For the evolution on smaller scales, however, the variation has shown more of alternations of cold and warm temperatures. The preceding hierarchical structure and warming jump are added with new ones. (2) The trend in which temperature varies is much the same for China and the Yunnan Province, but it is not consistent with that globally, the largest difference being that a weak period of cold temperature in 1955 - 1978 across the globe was suspended in 1979 when it jumped to a significant warming,while a period of very cold temperature in 1955 - 1986 in China and Yunnan was not followed by warming in similar extent until 1987. (3) Though there are consistent hierarchical structure and jumping features throughout the year in Yunnan, significant changes with season are also present and the most striking difference is that temperature tends to vary consistently with China in winter and spring but with the globe in summer and fall. 展开更多
关键词 auto-adaptive MULTI-RESOLUTION data filter hierarchical structure CLIMATIC JUMP
下载PDF
Crashworthiness Design and Multi-Objective Optimization for Bio-Inspired Hierarchical Thin-Walled Structures 被引量:5
20
作者 Shaoqiang Xu Weiwei Li +2 位作者 Lin Li Tao Li Chicheng Ma 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期929-947,共19页
Thin-walled structures have been used in many fields due to their superior mechanical properties.In this paper,two types of hierarchical multi-cell tubes,inspired by the self-similarity of Pinus sylvestris,are propose... Thin-walled structures have been used in many fields due to their superior mechanical properties.In this paper,two types of hierarchical multi-cell tubes,inspired by the self-similarity of Pinus sylvestris,are proposed to enhance structural energy absorption performance.The finite element models of the hierarchical structures are established to validate the crashworthiness performance under axial dynamic load.The theoreticalmodel of themean crushing force is also derived based on the simplified super folded element theory.The finite element results demonstrate that the energy absorption characteristics and deformation mode of the bionic hierarchical thin-walled tubes are further improved with the increase of hierarchical sub-structures.It can be also obtained that the energy absorption performance of corner self-similar tubes is better than edge self-similar tubes.Furthermore,multiobjective optimization of the hierarchical tubes is constructed by employing the response surface method and genetic algorithm,and the corresponding Pareto front diagram is obtained.This research provides a new idea for the crashworthiness design of thin-walled structures. 展开更多
关键词 Bionic structure crashworthiness design hierarchical tube multi-objective optimization
下载PDF
上一页 1 2 157 下一页 到第
使用帮助 返回顶部