As the ultimate building blocks of the universe, the limit structureless quark <i>u</i><sub>∞</sub> and its anti-quark <img src="Edit_b5291e23-3f94-4fd9-bca2-1829927c38c9.png" wid...As the ultimate building blocks of the universe, the limit structureless quark <i>u</i><sub>∞</sub> and its anti-quark <img src="Edit_b5291e23-3f94-4fd9-bca2-1829927c38c9.png" width="75" height="17" alt="" /> are considered at the infinite sublayer level of the quark model. Then <i>CP</i> is violated in the doublet of <i>u</i><sub>∞</sub> and <i>u</i><sub>∞</sub><sup style="margin-left:-7px;"><i>CP</i></sup> quarks to account for the asymmetry of the number of particles and anti-particles. This <i>CP</i> violation is explained by a <i>SU</i>(2) noncommutative geometry. The second, third and fourth generation quarks are considered only as the excited states of the first generation <i>u</i><sub>∞</sub> and <i>u</i><sub>∞</sub><sup style="margin-left:-7px;"><i>CP</i></sup> quarks. The fourth generation quarks are derived from both <i>CPT</i> transformation and the <i>SU</i>(2)<sub>L</sub>×<i>U</i>(1) gauge theory. The dark matter, quarks, leptons, gauge bosons and Higgs bosons are composed of only the <i>u</i><sub>∞</sub> and <i>u</i><sub>∞</sub><sup style="margin-left:-7px;"><i>CP</i></sup> quarks and the cosmological constant in Einstein’s field equation is also derived from the Higgs potential. Thus, the limit particle <i>u</i><sub>∞</sub> and its anti-particle <i>u</i><sub>∞</sub><sup style="margin-left:-7px;"><i>CP</i></sup> are the ultimate particles of the universe and produced thermally in the hot early universe of the Big Bang.展开更多
文摘As the ultimate building blocks of the universe, the limit structureless quark <i>u</i><sub>∞</sub> and its anti-quark <img src="Edit_b5291e23-3f94-4fd9-bca2-1829927c38c9.png" width="75" height="17" alt="" /> are considered at the infinite sublayer level of the quark model. Then <i>CP</i> is violated in the doublet of <i>u</i><sub>∞</sub> and <i>u</i><sub>∞</sub><sup style="margin-left:-7px;"><i>CP</i></sup> quarks to account for the asymmetry of the number of particles and anti-particles. This <i>CP</i> violation is explained by a <i>SU</i>(2) noncommutative geometry. The second, third and fourth generation quarks are considered only as the excited states of the first generation <i>u</i><sub>∞</sub> and <i>u</i><sub>∞</sub><sup style="margin-left:-7px;"><i>CP</i></sup> quarks. The fourth generation quarks are derived from both <i>CPT</i> transformation and the <i>SU</i>(2)<sub>L</sub>×<i>U</i>(1) gauge theory. The dark matter, quarks, leptons, gauge bosons and Higgs bosons are composed of only the <i>u</i><sub>∞</sub> and <i>u</i><sub>∞</sub><sup style="margin-left:-7px;"><i>CP</i></sup> quarks and the cosmological constant in Einstein’s field equation is also derived from the Higgs potential. Thus, the limit particle <i>u</i><sub>∞</sub> and its anti-particle <i>u</i><sub>∞</sub><sup style="margin-left:-7px;"><i>CP</i></sup> are the ultimate particles of the universe and produced thermally in the hot early universe of the Big Bang.