We reanalyze the recent computation of the amplitude of the Higgs boson decay into two photons presented by Gastmans et al. [1, 2]. The reasons for why this result cannot be the correct one have been discussed in some...We reanalyze the recent computation of the amplitude of the Higgs boson decay into two photons presented by Gastmans et al. [1, 2]. The reasons for why this result cannot be the correct one have been discussed in some recent papers. We address here the general issue of the indeterminacy of integrals with four-dimensional gauge-breaking regulators and to which extent it might eventually be solved by imposing physical constraints. Imposing gauge invariance as the last step upon Rξ-gauge calculations with four-dimensional gauge-breaking regulators, allows us to recover the well known H→γγ result. However we show that in the particular case of the unitary gauge, the indeterminacy cannot be tackled in the same way. The combination of the unitary gauge with a cutoff regularization scheme turns out to be non-predictive.展开更多
文摘We reanalyze the recent computation of the amplitude of the Higgs boson decay into two photons presented by Gastmans et al. [1, 2]. The reasons for why this result cannot be the correct one have been discussed in some recent papers. We address here the general issue of the indeterminacy of integrals with four-dimensional gauge-breaking regulators and to which extent it might eventually be solved by imposing physical constraints. Imposing gauge invariance as the last step upon Rξ-gauge calculations with four-dimensional gauge-breaking regulators, allows us to recover the well known H→γγ result. However we show that in the particular case of the unitary gauge, the indeterminacy cannot be tackled in the same way. The combination of the unitary gauge with a cutoff regularization scheme turns out to be non-predictive.