Allocation is one of main tasks in the high-level synthesis. It includes module , functional unit allocation, storage allocation and interconnection allocation. This paper models the allocation problem as cluster anal...Allocation is one of main tasks in the high-level synthesis. It includes module , functional unit allocation, storage allocation and interconnection allocation. This paper models the allocation problem as cluster analysis and applies a new algorithm, neighbor state transition (NST) algorithm, for cluster optimization. It is proved that the algorithm produces an asymptotically global optimal solution with the upper bound on the cost function (1 + O(1/n)2-ε)F*, When F" is the cost of the optimum solution, n is the problem size and e is a positive parameter arbitrarily close to zero. The numerical examples show that the NST algorithm produces better results compared to the other known methods.展开更多
This paper studies the linkage problem between the result of high-level synthesis and back-end technology, presents a method of high-level technology mapping based on knowl edge, and studies deeply all of its importan...This paper studies the linkage problem between the result of high-level synthesis and back-end technology, presents a method of high-level technology mapping based on knowl edge, and studies deeply all of its important links such as knowledge representation, knowledge utility and knowledge acquisition. It includes: (1) present a kind of expanded production about knowledge of circuit structure; (2) present a VHDL-based method to acquire knowledge of tech nology mapping; (3) provide solution control strategy and algorithm of knowledge utility; (4)present a half-automatic maintenance method, which can find redundance and contradiction of knowledge base; (5) present a practical method to embed the algorithm into knowledge system to decrease complexity of knowledge base. A system has been developed and linked with three kinds of technologies, so verified the work of this paper.展开更多
文摘Allocation is one of main tasks in the high-level synthesis. It includes module , functional unit allocation, storage allocation and interconnection allocation. This paper models the allocation problem as cluster analysis and applies a new algorithm, neighbor state transition (NST) algorithm, for cluster optimization. It is proved that the algorithm produces an asymptotically global optimal solution with the upper bound on the cost function (1 + O(1/n)2-ε)F*, When F" is the cost of the optimum solution, n is the problem size and e is a positive parameter arbitrarily close to zero. The numerical examples show that the NST algorithm produces better results compared to the other known methods.
文摘This paper studies the linkage problem between the result of high-level synthesis and back-end technology, presents a method of high-level technology mapping based on knowl edge, and studies deeply all of its important links such as knowledge representation, knowledge utility and knowledge acquisition. It includes: (1) present a kind of expanded production about knowledge of circuit structure; (2) present a VHDL-based method to acquire knowledge of tech nology mapping; (3) provide solution control strategy and algorithm of knowledge utility; (4)present a half-automatic maintenance method, which can find redundance and contradiction of knowledge base; (5) present a practical method to embed the algorithm into knowledge system to decrease complexity of knowledge base. A system has been developed and linked with three kinds of technologies, so verified the work of this paper.