Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples...Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications.展开更多
The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the...The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the coating oxidized in ambient air at 1000 °C for 25-250 h were investigated using SEM, X-ray diffraction and optical microscope methods. The results show that the copper with single phase Ni2Al3 coating possesses the best high temperature oxidation resistance, and the mass gain of the coating is 1/15 that of pure copper and 1/2 that of nickel coating, respectively. The specimen surface after being oxidized for 25 h still comprises Ni2Al3 phase. However, when the time of oxidizing treatment increases to 50 h, the Ni Al phase is formed. It is also found that the Ni2Al3 phase completely turns into Ni Al phase after oxidizing treatment for 100 h and above. The Ni Al coating shows excellent high temperature oxidation resistance when oxidation time is 250 h.展开更多
A Ti(Al,Si)3 diffusion coating was prepared on γ-TiAl alloy by cold sprayed Al?20Si alloy coating, followed by a heat-treatment. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and ...A Ti(Al,Si)3 diffusion coating was prepared on γ-TiAl alloy by cold sprayed Al?20Si alloy coating, followed by a heat-treatment. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and 120 cycles to check the oxidation resistance of the coating. The microstructure and phase transformation of the coating before and after the oxidation were studied by SEM, XRD and EPMA. The results indicate that the diffusion coating shows good oxidation resistance. The mass gain of the diffusion coating is only a quarter of that of bare alloy. After oxidation, the diffusion coating is degraded into three layers: an inner TiAl2 layer, a two-phase intermediate layer composed of a Ti(Al,Si)3 matrix and Si-rich precipitates, and a porous layer because of the inter-diffusion between the coating and substrate.展开更多
In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstruc...In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstructures, phase constitutions and oxidation behavior of these coatings were studied. The results show that the coating prepared by co-depositing Si?Y at 1080 °C for 5 h has a multiple layer structure: a superficial zone consisting of Al-rich (Ti,Nb)5Si4 and (Ti,Nb)5Si3, an out layer consisting of (Ti,Nb)Si2, a middle layer consisting of (Ti,Nb)5Si4 and (Ti,Nb)5Si3, and aγ-TiAl inner layer. Co-deposition temperature imposes strong influences on the coating structure. The coating prepared by Si?Y co-depositing at 1080 °C for 5 h shows relatively good oxidation resistance at 1000 °C in air, and the oxidation rate constant of the coating is about two orders of magnitude lower than that of the bare TiAl alloy.展开更多
The isothermal oxidation behavior of NiAl-31Cr-2.9Mo-0.1Hf-0.05Ho directional eutectic alloy was investigated with the help of scanning electron microscopy and X-ray diffraction.The results revealed that a continuous ...The isothermal oxidation behavior of NiAl-31Cr-2.9Mo-0.1Hf-0.05Ho directional eutectic alloy was investigated with the help of scanning electron microscopy and X-ray diffraction.The results revealed that a continuous Al2O3 scale was formed and owned excellent oxidation resistance in the temperature range of 900-1100°C.When the temperature was up to 1150°C,the continuous Al2O3 oxide film ruptured.Trace rare earth element Ho distributed uniformly in the alloy and relatively high level of Al in Cr(Mo)phase are beneficial to the formation of continuous and compact Al2O3 scale.During the oxidation,a phase transformation fromθ-Al2O3 toα-Al2O3 existed on the surface of oxidation film.It resulted in the abnormal oxidation mass gain happening when the alloy was oxidized at 1000°C or 1050°C.展开更多
Refractory high entropy alloys have superior mechanical properties at high temperatures, and the oxidation behavior of these alloys is very important. The present work investigated the high temperature oxidation behav...Refractory high entropy alloys have superior mechanical properties at high temperatures, and the oxidation behavior of these alloys is very important. The present work investigated the high temperature oxidation behavior of three alloys with compositions of TiNbTa0.5Zr, TiNbTa0.5ZrAl and TiNbTa0.5ZrAlMo0.5, and the effects of alloying elements were discussed. Results indicated that the oxidation rates of the TiNbTa0.5Zr and TiNbTa0.5ZrAl alloys are controlled by diffusion, and obey the exponential rule. However, the oxidation rate of the TiNbTa0.5ZrAlMo0.5 alloy is controlled by interface reaction, and obeys the linear rule. The addition of Al leads to a better oxidation resistance by forming a protective oxide scale. However, the protection of Al-rich scale is weakened by the addition of Mo. Extensive pores and cracks occur in the oxide scale of the TiNbTa0.5ZrAlMo0.5 alloy, resulting in a significant decrease in oxidation resistance.展开更多
The effect of rare earth element yttrium on the high temperature oxidation resistance of a directionally solidified Ni-base superalloy was studied with scanning electron microscopy(SEM), energy dispersive spectrum(EDS...The effect of rare earth element yttrium on the high temperature oxidation resistance of a directionally solidified Ni-base superalloy was studied with scanning electron microscopy(SEM), energy dispersive spectrum(EDS)and X-ray diffraction(XRD)techniques. The results show that the oxidation resistance of the alloy is substantially improved by adding proper amount of yttrium.展开更多
High temperature oxidation behaviors of FGH96 P/M superaUoy have been studied in air at temperatures ranging from 600 to 1000℃. By means of isothermal oxidation testing, X-ray diffraction, SEM (scanning electron mic...High temperature oxidation behaviors of FGH96 P/M superaUoy have been studied in air at temperatures ranging from 600 to 1000℃. By means of isothermal oxidation testing, X-ray diffraction, SEM (scanning electron microscopy), and EDS (energy dispersive X-ray spectroscopy) analyses, the oxidation kinetics as well as the composition and morphology of scales were investigated. Thermodynamic calculations were used to explain the oxidation mechanism. The results showed that as the oxidation temperature increased, the oxidation rate, the scale thickness, and scale spallation increased. FGH96 P/M superalloy exhibits good oxidation resistance at temperature below 800℃. The oxidation kinetics follows an approximately parabolic rate law, and the oxide layer was mainly composed of Cr2O3 TiO2 and a little amount of NiCr2O4. The oxidation is controlled by the transmission of chromium. titanium, and oxygen through the oxide scale.展开更多
The effect of a sputtered Ti-48AI-8Cr-2Ag (at. pct) coating on the oxidation resistance of the cast Ti-46.5AI-5Nb (at. pct) alloy was investigated in air at 1000-1100℃. Hot corrosion in molten 75 wt pct Na2SO4+25 wt ...The effect of a sputtered Ti-48AI-8Cr-2Ag (at. pct) coating on the oxidation resistance of the cast Ti-46.5AI-5Nb (at. pct) alloy was investigated in air at 1000-1100℃. Hot corrosion in molten 75 wt pct Na2SO4+25 wt pct K2SO4 was investigated at 900℃. The scale on the cast TiAINb tends to spall in air, while the scale on coating is very adherent. The sputtered Ti-48AI-8Cr-2Ag coating remarkably improved high temperature oxidation resistance of the cast Ti-46.5AI-5Nb alloy because of the formation of an adherent Al2O3 scale. Due to the inward diffusion of Cr, Kirkendall voids were found at the coating/substrate interface. TiAICrAg coating provided excellent hot corrosion resistance for TiAINb alloy in molten 75 wt pct Na2SO4+25 wt pct K2S04 at 900℃ due to the formation of a continuous Al_2O_3 scale.展开更多
The interfacial behavior of sulfur and yttrium in the yttrium modified Ni 3Al based alloy IC6 during oxidation at 1100 ℃ was analyzed by X ray line scan of electron probe microstructural analysis(EPMA). The resul...The interfacial behavior of sulfur and yttrium in the yttrium modified Ni 3Al based alloy IC6 during oxidation at 1100 ℃ was analyzed by X ray line scan of electron probe microstructural analysis(EPMA). The results show that the migration and segregation of sulfur to the interface between oxide scale and the substrate at high temperature is retarded owing to the presence of yttrium. This is attributed to the desulfurization by yttrium in the melt and the trapping of sulfur by yttrium rich phases during oxidation, which leads to improving the coherence between oxide scale and substrate. Another reason of increasing the high temperature oxidation resistance of alloy IC6 by the addition of yttrium is that yttrium migrates to the grain boundaries of oxides during oxidation and hence improve their strength. This results in the transformation of the oxide scale spallation cracks from intergranular cracks for alloy without yttrium to transgranular ones for yttrium modified alloy.展开更多
(Ni,Pd)AI coating, prepared by low pressure pack cementation on the Ni-base superalloy M38 where Pd-20 wt pct Ni alloy was predeposited, consists of a single β-(Ni,Pd)AI phase. The initial isothermal oxidation behavi...(Ni,Pd)AI coating, prepared by low pressure pack cementation on the Ni-base superalloy M38 where Pd-20 wt pct Ni alloy was predeposited, consists of a single β-(Ni,Pd)AI phase. The initial isothermal oxidation behavior of (Ni,Pd)AI coating was investigated by TGA, XRD, SEM/EDS at 800-1100℃. Results show that oxidation kinetics accord preferably with parabolic law at 800, 900 and 1100℃, but not at 1000℃. θ-AI203 was observed at 800-1100℃. It is found that Pd plays an important role in accelerating the diffusion of Ti from the substrate to the coating surface in the aluminide coating.展开更多
The oxidation characteristics of high speed steel (HSS) were studied at 500 to 800°C. The non-isothermal oxidation and isothermal oxidation (500, 575, 650, 725, 800°C) of HSS were investigated by thermo-gra...The oxidation characteristics of high speed steel (HSS) were studied at 500 to 800°C. The non-isothermal oxidation and isothermal oxidation (500, 575, 650, 725, 800°C) of HSS were investigated by thermo-gravimetric analysis (TGA). The microstruc- ture, morphology and oxide scale thickness of the isothermal oxidation samples were analyzed by optical microscope (OM), electron probe micro analyzer (EPMA), X-ray diffraction spectrum (XRD) and scanning electron microscope (SEM). The results indicate that the oxidation rate of HSS is very slow at 500 to 650°C, increasing gradually at 650 to 750°C, and drastically at 750 to 800°C, be- cause the phase transformation happens at about 750°C.展开更多
The failure process was characterized by complex diffusion of elements in the bonding layer,TGO growth and growth stress inside the coating.We studied the aluminum migration phenomenon of NiCoCrAlY and NiCoCrAlYHf coa...The failure process was characterized by complex diffusion of elements in the bonding layer,TGO growth and growth stress inside the coating.We studied the aluminum migration phenomenon of NiCoCrAlY and NiCoCrAlYHf coatings under high temperature oxidation,TGO growth characteristics,the microstructure and composition of the bonding layer,and integrates them into the description of the surface strain under coating tension.The experimental results show that the TGO growth rate of NiCoCrAIYHf coating is lower than that of NiCoCrAIY coating,and the formed TGO is thinner.After high temperature oxidation,the cracking time of NiCoCrAIY coating is advanced,while the cracking time of rare earth doped coating is delayed.The addition of rare earth elements can effectively inhibit the generation of spinel phase,improve the fracture toughness of TGO,refine the grains in the bonding layer,and increase the grain boundary strengthening by 29.1 MPa which is consistent with the experimental value.Therefore,the yield strength of the doped coating is improved and the crack time of the coating is delayed.展开更多
The oxidation behavior of the Ti-47.5Al-2.5V-1.0Cr-0.2Zr alloy at 900℃ was investigated at different oxidation times(5,20,60 and 100 h).The results show that the total weight gain of the alloy after 100 h at 900℃ ox...The oxidation behavior of the Ti-47.5Al-2.5V-1.0Cr-0.2Zr alloy at 900℃ was investigated at different oxidation times(5,20,60 and 100 h).The results show that the total weight gain of the alloy after 100 h at 900℃ oxidation is 9.1 g·m^(-2),and the oxidation rate decreases with oxidation time.The oxides on the alloy surface are mainly TiO_(2) and Al_(2)O_(3).At the beginning of oxidation(5 h),the oxide film is relatively complete,thin,and the interface between the oxide layer and the matrix is virtually flat.At the end of oxidation(100 h),the thickness of the oxide film is expanded,cracking and spalling occur,and the spalling form is intra-film spalling.At the same time,oxygen is mainly distributed in the oxide film and the oxygen content in the alloy substrate is reduced,confirming that the TiAl alloy has a certain oxidation stability at 900℃.From the outer surface of the oxide layer to the matrix,the TiO_(2) content increases and the Al_(2)O_(3) content decreases.Oxidation proceeds to completion in this system via the dissolution and diffusion of O atom.展开更多
Oxidation behaviors of TP304H steel with electrophoresis deposited CeO2 coating in water vapor were studied at 610℃~770℃ for 65 h. The results showed that CeO2 coating reduced effectively the oxidation rate of TP30...Oxidation behaviors of TP304H steel with electrophoresis deposited CeO2 coating in water vapor were studied at 610℃~770℃ for 65 h. The results showed that CeO2 coating reduced effectively the oxidation rate of TP304H. Analysis with SEM and EDS showed the structure of oxide scale turned from multi-layer to mono-layer and oxide scale with high Cr content formed on the surface of CeO2 coating while inner oxidation disappeared. Based on test results and CeO2characters that Ce ion can vary between Ce4+ and Ce3+ under oxygen-rich and oxygen-poor environment, it is concluded that CeO2 coating acts as a barrier to prevent oxygen inner diffusion and the partial oxygen pressure of CeO2 coating-substrate interface is limited. Cr first diffuses outward across CeO2 coating and forms oxide scale on the surface, which delays formation of Fe oxide.展开更多
The oxidation behaviors of high-entropy alloys AlxCoCrFeNi(x=0.15, 0.4) in supercritical water at 550 and 600 °C were studied, and compared with HR3 C steel. All oxide films formed on alloys are composed of spine...The oxidation behaviors of high-entropy alloys AlxCoCrFeNi(x=0.15, 0.4) in supercritical water at 550 and 600 °C were studied, and compared with HR3 C steel. All oxide films formed on alloys are composed of spinel type(Fe, Cr)3O4 oxides. Compared with the oxide film on HR3 C steel, thinner oxide films with smaller size of oxide particles were realized on Al0.15 CoCrFeNi and Al0.4CoCrFeNi, indicating a superior oxidation resistance of Al0.15 CoCrFeNi and Al0.4CoCrFeNi to HR3 C steel. Electrochemical test results reveal that surface oxide films greatly affect the electrochemical corrosion behavior of the oxidized alloys in 3.5% Na Cl solution. The relatively high corrosion resistance of oxidized Al0.15 CoCrFeNi and HR3 C is attributed to the formation of thick and multi-layer oxides.展开更多
High reactivity and ease of ignition are the major obstacles for the application of Mg alloys in aerospace.Thus,the ignition mechanisms of Mg alloys should be investigated systematically,which can guide the ignition-p...High reactivity and ease of ignition are the major obstacles for the application of Mg alloys in aerospace.Thus,the ignition mechanisms of Mg alloys should be investigated systematically,which can guide the ignition-proof alloy design.This article concludes the factors influencing the ignition resistance of Mg alloys from oxide film and substrate microstructure,and also the mechanisms of alloying elements improving the ignition resistance.The low strength is another reason restricting the development of Mg alloys.Therefore,at the last section,Mg alloys with the combination of high strength and good ignition-proof performance are summarized,including Mg-Al-Ca based alloys,SEN(Mg-Al-Zn-Ca-Y)alloys as well as Mg-Y and Mg-Gd based alloys.Besides,the shortages and the future focus of theses alloys are also reviewed.The aim of this article is to promote the understanding of oxidation and ignition mechanisms of Mg alloys and to provide reference for the development of Mg alloys with high strength and excellent ignition-proof performance at the same time.展开更多
The electrochemical behaviors of high temperature oxide film formed on the sputtered microcrystalline coating of M38 alloy (mc-M38) were investigated by potentiodynamic and electrochemical impedance spectroscopy (...The electrochemical behaviors of high temperature oxide film formed on the sputtered microcrystalline coating of M38 alloy (mc-M38) were investigated by potentiodynamic and electrochemical impedance spectroscopy (EIS) techniques in 3.5% NaCl solution. Mott-Schottky analysis was used to study the semi-conductive properties of the surface oxide. The results of the capacitance measurements showed that the oxide films on both the coating and the cast alloy were p-type semiconducting characteristics. Both the carrier density (Na)and the flat band potential (Efb) were obviously frequency-dependent, and the optimal frequency range was from 1000 to 1500 Hz. The oxidized coating exhibited higher protectivity than the oxidized cast alloy due to the lower carrier density compared with that of the oxidized cast alloy. The EIS data of the long-term immersing tests suggested that the oxide film served as an inner-barrier layer against chloride ions. The penetration of the aggressive ions into the surface oxide resulted in the decreased polarization resistance as a function of the immersion time.展开更多
The Y_2O_3 thin film was applied on Fe-3Al intermetallic compound by electrodeposition and thermal decomposition. The cyclic oxidation of the Fe-3Al specimens with and without surfaceapplied Y_2O_3 thin film was carri...The Y_2O_3 thin film was applied on Fe-3Al intermetallic compound by electrodeposition and thermal decomposition. The cyclic oxidation of the Fe-3Al specimens with and without surfaceapplied Y_2O_3 thin film was carried out at 900 ℃ in air. The results show that the selective oxidation of Al in Fe-3Al was promoted, and both of the plasticity and the adhesion of the oxide scale formed on Fe3Al were improved and the high temperature oxidation resistance of Fe3Al was enhanced markedly.展开更多
The oxidation of the ternary alloy Ni-15Cu-5Al in 1 × 105 Pa pure oxygen at 700 ℃ and 800 ℃ was studied. The results show that the behavior of the Ni-rich alloy is similar to that of the binary Ni-Al alloy with...The oxidation of the ternary alloy Ni-15Cu-5Al in 1 × 105 Pa pure oxygen at 700 ℃ and 800 ℃ was studied. The results show that the behavior of the Ni-rich alloy is similar to that of the binary Ni-Al alloy with the same Al content in the form of an external NiO layer coupled to the internal oxidation of aluminium. The presence of 15%(mole fraction) Cu cannot modify substantially the values of relevant parameters affecting the transition from the internal to the external oxidation of aluminium. The presence of 5 % Al reduces the oxidation rate of the corresponding Ni-Cu alloy during the whole oxidation stages, though 5 % Al is still insufficient to form protective external alumina scales.展开更多
基金funded by the National Key Research and Development Program of China (2018YFE0104200)National Natural Science Foundation of China (51875310, 52175274, 82172065)Tsinghua Precision Medicine Foundation
文摘Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications.
基金Projects(CKJB201205,QKJB201202,YJK201307)supported by the Nanjing Institute of Technology,China
文摘The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the coating oxidized in ambient air at 1000 °C for 25-250 h were investigated using SEM, X-ray diffraction and optical microscope methods. The results show that the copper with single phase Ni2Al3 coating possesses the best high temperature oxidation resistance, and the mass gain of the coating is 1/15 that of pure copper and 1/2 that of nickel coating, respectively. The specimen surface after being oxidized for 25 h still comprises Ni2Al3 phase. However, when the time of oxidizing treatment increases to 50 h, the Ni Al phase is formed. It is also found that the Ni2Al3 phase completely turns into Ni Al phase after oxidizing treatment for 100 h and above. The Ni Al coating shows excellent high temperature oxidation resistance when oxidation time is 250 h.
基金Project(50971127)supported by the National Natural Science Foundation of China
文摘A Ti(Al,Si)3 diffusion coating was prepared on γ-TiAl alloy by cold sprayed Al?20Si alloy coating, followed by a heat-treatment. The isothermal and cyclic oxidation tests were conducted at 900 °C for 1000 h and 120 cycles to check the oxidation resistance of the coating. The microstructure and phase transformation of the coating before and after the oxidation were studied by SEM, XRD and EPMA. The results indicate that the diffusion coating shows good oxidation resistance. The mass gain of the diffusion coating is only a quarter of that of bare alloy. After oxidation, the diffusion coating is degraded into three layers: an inner TiAl2 layer, a two-phase intermediate layer composed of a Ti(Al,Si)3 matrix and Si-rich precipitates, and a porous layer because of the inter-diffusion between the coating and substrate.
基金Project(2014JZ012)supported by the Natural Science Program for Basic Research in Key Areas of Shaanxi Province,China
文摘In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstructures, phase constitutions and oxidation behavior of these coatings were studied. The results show that the coating prepared by co-depositing Si?Y at 1080 °C for 5 h has a multiple layer structure: a superficial zone consisting of Al-rich (Ti,Nb)5Si4 and (Ti,Nb)5Si3, an out layer consisting of (Ti,Nb)Si2, a middle layer consisting of (Ti,Nb)5Si4 and (Ti,Nb)5Si3, and aγ-TiAl inner layer. Co-deposition temperature imposes strong influences on the coating structure. The coating prepared by Si?Y co-depositing at 1080 °C for 5 h shows relatively good oxidation resistance at 1000 °C in air, and the oxidation rate constant of the coating is about two orders of magnitude lower than that of the bare TiAl alloy.
基金Project(51101055)supported by the National Natural Science Foundation of China
文摘The isothermal oxidation behavior of NiAl-31Cr-2.9Mo-0.1Hf-0.05Ho directional eutectic alloy was investigated with the help of scanning electron microscopy and X-ray diffraction.The results revealed that a continuous Al2O3 scale was formed and owned excellent oxidation resistance in the temperature range of 900-1100°C.When the temperature was up to 1150°C,the continuous Al2O3 oxide film ruptured.Trace rare earth element Ho distributed uniformly in the alloy and relatively high level of Al in Cr(Mo)phase are beneficial to the formation of continuous and compact Al2O3 scale.During the oxidation,a phase transformation fromθ-Al2O3 toα-Al2O3 existed on the surface of oxidation film.It resulted in the abnormal oxidation mass gain happening when the alloy was oxidized at 1000°C or 1050°C.
基金Project(51671217)supported by the National Natural Science Foundation of ChinaProject(CX2017B047)supported by the Program of Innovation for Postgraduate of Hunan Province,China
文摘Refractory high entropy alloys have superior mechanical properties at high temperatures, and the oxidation behavior of these alloys is very important. The present work investigated the high temperature oxidation behavior of three alloys with compositions of TiNbTa0.5Zr, TiNbTa0.5ZrAl and TiNbTa0.5ZrAlMo0.5, and the effects of alloying elements were discussed. Results indicated that the oxidation rates of the TiNbTa0.5Zr and TiNbTa0.5ZrAl alloys are controlled by diffusion, and obey the exponential rule. However, the oxidation rate of the TiNbTa0.5ZrAlMo0.5 alloy is controlled by interface reaction, and obeys the linear rule. The addition of Al leads to a better oxidation resistance by forming a protective oxide scale. However, the protection of Al-rich scale is weakened by the addition of Mo. Extensive pores and cracks occur in the oxide scale of the TiNbTa0.5ZrAlMo0.5 alloy, resulting in a significant decrease in oxidation resistance.
文摘The effect of rare earth element yttrium on the high temperature oxidation resistance of a directionally solidified Ni-base superalloy was studied with scanning electron microscopy(SEM), energy dispersive spectrum(EDS)and X-ray diffraction(XRD)techniques. The results show that the oxidation resistance of the alloy is substantially improved by adding proper amount of yttrium.
文摘High temperature oxidation behaviors of FGH96 P/M superaUoy have been studied in air at temperatures ranging from 600 to 1000℃. By means of isothermal oxidation testing, X-ray diffraction, SEM (scanning electron microscopy), and EDS (energy dispersive X-ray spectroscopy) analyses, the oxidation kinetics as well as the composition and morphology of scales were investigated. Thermodynamic calculations were used to explain the oxidation mechanism. The results showed that as the oxidation temperature increased, the oxidation rate, the scale thickness, and scale spallation increased. FGH96 P/M superalloy exhibits good oxidation resistance at temperature below 800℃. The oxidation kinetics follows an approximately parabolic rate law, and the oxide layer was mainly composed of Cr2O3 TiO2 and a little amount of NiCr2O4. The oxidation is controlled by the transmission of chromium. titanium, and oxygen through the oxide scale.
文摘The effect of a sputtered Ti-48AI-8Cr-2Ag (at. pct) coating on the oxidation resistance of the cast Ti-46.5AI-5Nb (at. pct) alloy was investigated in air at 1000-1100℃. Hot corrosion in molten 75 wt pct Na2SO4+25 wt pct K2SO4 was investigated at 900℃. The scale on the cast TiAINb tends to spall in air, while the scale on coating is very adherent. The sputtered Ti-48AI-8Cr-2Ag coating remarkably improved high temperature oxidation resistance of the cast Ti-46.5AI-5Nb alloy because of the formation of an adherent Al2O3 scale. Due to the inward diffusion of Cr, Kirkendall voids were found at the coating/substrate interface. TiAICrAg coating provided excellent hot corrosion resistance for TiAINb alloy in molten 75 wt pct Na2SO4+25 wt pct K2S04 at 900℃ due to the formation of a continuous Al_2O_3 scale.
文摘The interfacial behavior of sulfur and yttrium in the yttrium modified Ni 3Al based alloy IC6 during oxidation at 1100 ℃ was analyzed by X ray line scan of electron probe microstructural analysis(EPMA). The results show that the migration and segregation of sulfur to the interface between oxide scale and the substrate at high temperature is retarded owing to the presence of yttrium. This is attributed to the desulfurization by yttrium in the melt and the trapping of sulfur by yttrium rich phases during oxidation, which leads to improving the coherence between oxide scale and substrate. Another reason of increasing the high temperature oxidation resistance of alloy IC6 by the addition of yttrium is that yttrium migrates to the grain boundaries of oxides during oxidation and hence improve their strength. This results in the transformation of the oxide scale spallation cracks from intergranular cracks for alloy without yttrium to transgranular ones for yttrium modified alloy.
文摘(Ni,Pd)AI coating, prepared by low pressure pack cementation on the Ni-base superalloy M38 where Pd-20 wt pct Ni alloy was predeposited, consists of a single β-(Ni,Pd)AI phase. The initial isothermal oxidation behavior of (Ni,Pd)AI coating was investigated by TGA, XRD, SEM/EDS at 800-1100℃. Results show that oxidation kinetics accord preferably with parabolic law at 800, 900 and 1100℃, but not at 1000℃. θ-AI203 was observed at 800-1100℃. It is found that Pd plays an important role in accelerating the diffusion of Ti from the substrate to the coating surface in the aluminide coating.
基金This research was financially supported by the National Natural Science Foundation of China (No.50274028) and the Major StateBasic Research Development Program of China (973 Program No.G19990650).
文摘The oxidation characteristics of high speed steel (HSS) were studied at 500 to 800°C. The non-isothermal oxidation and isothermal oxidation (500, 575, 650, 725, 800°C) of HSS were investigated by thermo-gravimetric analysis (TGA). The microstruc- ture, morphology and oxide scale thickness of the isothermal oxidation samples were analyzed by optical microscope (OM), electron probe micro analyzer (EPMA), X-ray diffraction spectrum (XRD) and scanning electron microscope (SEM). The results indicate that the oxidation rate of HSS is very slow at 500 to 650°C, increasing gradually at 650 to 750°C, and drastically at 750 to 800°C, be- cause the phase transformation happens at about 750°C.
基金Funded by the National Natural Science Foundation of China(No.51965023)。
文摘The failure process was characterized by complex diffusion of elements in the bonding layer,TGO growth and growth stress inside the coating.We studied the aluminum migration phenomenon of NiCoCrAlY and NiCoCrAlYHf coatings under high temperature oxidation,TGO growth characteristics,the microstructure and composition of the bonding layer,and integrates them into the description of the surface strain under coating tension.The experimental results show that the TGO growth rate of NiCoCrAIYHf coating is lower than that of NiCoCrAIY coating,and the formed TGO is thinner.After high temperature oxidation,the cracking time of NiCoCrAIY coating is advanced,while the cracking time of rare earth doped coating is delayed.The addition of rare earth elements can effectively inhibit the generation of spinel phase,improve the fracture toughness of TGO,refine the grains in the bonding layer,and increase the grain boundary strengthening by 29.1 MPa which is consistent with the experimental value.Therefore,the yield strength of the doped coating is improved and the crack time of the coating is delayed.
基金financially supported by the National Natural Science Foundation of China (51805335)
文摘The oxidation behavior of the Ti-47.5Al-2.5V-1.0Cr-0.2Zr alloy at 900℃ was investigated at different oxidation times(5,20,60 and 100 h).The results show that the total weight gain of the alloy after 100 h at 900℃ oxidation is 9.1 g·m^(-2),and the oxidation rate decreases with oxidation time.The oxides on the alloy surface are mainly TiO_(2) and Al_(2)O_(3).At the beginning of oxidation(5 h),the oxide film is relatively complete,thin,and the interface between the oxide layer and the matrix is virtually flat.At the end of oxidation(100 h),the thickness of the oxide film is expanded,cracking and spalling occur,and the spalling form is intra-film spalling.At the same time,oxygen is mainly distributed in the oxide film and the oxygen content in the alloy substrate is reduced,confirming that the TiAl alloy has a certain oxidation stability at 900℃.From the outer surface of the oxide layer to the matrix,the TiO_(2) content increases and the Al_(2)O_(3) content decreases.Oxidation proceeds to completion in this system via the dissolution and diffusion of O atom.
文摘Oxidation behaviors of TP304H steel with electrophoresis deposited CeO2 coating in water vapor were studied at 610℃~770℃ for 65 h. The results showed that CeO2 coating reduced effectively the oxidation rate of TP304H. Analysis with SEM and EDS showed the structure of oxide scale turned from multi-layer to mono-layer and oxide scale with high Cr content formed on the surface of CeO2 coating while inner oxidation disappeared. Based on test results and CeO2characters that Ce ion can vary between Ce4+ and Ce3+ under oxygen-rich and oxygen-poor environment, it is concluded that CeO2 coating acts as a barrier to prevent oxygen inner diffusion and the partial oxygen pressure of CeO2 coating-substrate interface is limited. Cr first diffuses outward across CeO2 coating and forms oxide scale on the surface, which delays formation of Fe oxide.
基金Projects(51134013,51171037,51101024)supported by the National Natural Science Foundation of China
文摘The oxidation behaviors of high-entropy alloys AlxCoCrFeNi(x=0.15, 0.4) in supercritical water at 550 and 600 °C were studied, and compared with HR3 C steel. All oxide films formed on alloys are composed of spinel type(Fe, Cr)3O4 oxides. Compared with the oxide film on HR3 C steel, thinner oxide films with smaller size of oxide particles were realized on Al0.15 CoCrFeNi and Al0.4CoCrFeNi, indicating a superior oxidation resistance of Al0.15 CoCrFeNi and Al0.4CoCrFeNi to HR3 C steel. Electrochemical test results reveal that surface oxide films greatly affect the electrochemical corrosion behavior of the oxidized alloys in 3.5% Na Cl solution. The relatively high corrosion resistance of oxidized Al0.15 CoCrFeNi and HR3 C is attributed to the formation of thick and multi-layer oxides.
基金the financial supports from the National Key Research and Development Plan(Grant No.2021YFB3701100)the National Natural Science Foundation of China(Grant No.U2241231,No.52071206)。
文摘High reactivity and ease of ignition are the major obstacles for the application of Mg alloys in aerospace.Thus,the ignition mechanisms of Mg alloys should be investigated systematically,which can guide the ignition-proof alloy design.This article concludes the factors influencing the ignition resistance of Mg alloys from oxide film and substrate microstructure,and also the mechanisms of alloying elements improving the ignition resistance.The low strength is another reason restricting the development of Mg alloys.Therefore,at the last section,Mg alloys with the combination of high strength and good ignition-proof performance are summarized,including Mg-Al-Ca based alloys,SEN(Mg-Al-Zn-Ca-Y)alloys as well as Mg-Y and Mg-Gd based alloys.Besides,the shortages and the future focus of theses alloys are also reviewed.The aim of this article is to promote the understanding of oxidation and ignition mechanisms of Mg alloys and to provide reference for the development of Mg alloys with high strength and excellent ignition-proof performance at the same time.
文摘The electrochemical behaviors of high temperature oxide film formed on the sputtered microcrystalline coating of M38 alloy (mc-M38) were investigated by potentiodynamic and electrochemical impedance spectroscopy (EIS) techniques in 3.5% NaCl solution. Mott-Schottky analysis was used to study the semi-conductive properties of the surface oxide. The results of the capacitance measurements showed that the oxide films on both the coating and the cast alloy were p-type semiconducting characteristics. Both the carrier density (Na)and the flat band potential (Efb) were obviously frequency-dependent, and the optimal frequency range was from 1000 to 1500 Hz. The oxidized coating exhibited higher protectivity than the oxidized cast alloy due to the lower carrier density compared with that of the oxidized cast alloy. The EIS data of the long-term immersing tests suggested that the oxide film served as an inner-barrier layer against chloride ions. The penetration of the aggressive ions into the surface oxide resulted in the decreased polarization resistance as a function of the immersion time.
文摘The Y_2O_3 thin film was applied on Fe-3Al intermetallic compound by electrodeposition and thermal decomposition. The cyclic oxidation of the Fe-3Al specimens with and without surfaceapplied Y_2O_3 thin film was carried out at 900 ℃ in air. The results show that the selective oxidation of Al in Fe-3Al was promoted, and both of the plasticity and the adhesion of the oxide scale formed on Fe3Al were improved and the high temperature oxidation resistance of Fe3Al was enhanced markedly.
文摘The oxidation of the ternary alloy Ni-15Cu-5Al in 1 × 105 Pa pure oxygen at 700 ℃ and 800 ℃ was studied. The results show that the behavior of the Ni-rich alloy is similar to that of the binary Ni-Al alloy with the same Al content in the form of an external NiO layer coupled to the internal oxidation of aluminium. The presence of 15%(mole fraction) Cu cannot modify substantially the values of relevant parameters affecting the transition from the internal to the external oxidation of aluminium. The presence of 5 % Al reduces the oxidation rate of the corresponding Ni-Cu alloy during the whole oxidation stages, though 5 % Al is still insufficient to form protective external alumina scales.