Central Wisconsin has the greatest density of high capacity wells in the state, most of which are used for agricultural irrigation. Irrigated agriculture has been growing steadily in the region since the 1950’s, when...Central Wisconsin has the greatest density of high capacity wells in the state, most of which are used for agricultural irrigation. Irrigated agriculture has been growing steadily in the region since the 1950’s, when irrigation systems and high capacity wells became inexpensive and easy to install. Recent low lake and river levels have increased concerns that unregulated groundwater pumping for irrigation will undermine the availability of groundwater to support surface waters and domestic uses. Some research has quantified the magnitude of groundwater level declines due to irrigation pumping, but no studies have identified its relation to climatic precipitation changes. Changes in precipitation can appear to exacerbate or mask the effect of groundwater pumping. In this study, four groundwater monitoring wells and five climate stations were examined for shifts in groundwater levels and precipitation changes. Through statistical analysis, significant precipitation increases were identified in the southern part of the study area which averaged 2.7 mm per year, but no significant change was determined for the northern portion. Bivariate analysis identified water level declines within the region in the years 1974, 1992 and 1999 for irrigated land covers. Multiple regression analysis explained, predicted and quantified the interaction between precipitation and pumping. Wells located in areas with many high capacity wells showed a decline in water levels of up to 1.28 meters. In the southern portion of the study area where increases in precipitation occurred, this decline was thought to be masked. Results for one region (Plover) agreed with a previously published calibrated groundwater model, which demonstrates that this statistical method may be used to separate the impact of groundwater pumping from changing precipitation, even where observation well data are not widely available.展开更多
文摘Central Wisconsin has the greatest density of high capacity wells in the state, most of which are used for agricultural irrigation. Irrigated agriculture has been growing steadily in the region since the 1950’s, when irrigation systems and high capacity wells became inexpensive and easy to install. Recent low lake and river levels have increased concerns that unregulated groundwater pumping for irrigation will undermine the availability of groundwater to support surface waters and domestic uses. Some research has quantified the magnitude of groundwater level declines due to irrigation pumping, but no studies have identified its relation to climatic precipitation changes. Changes in precipitation can appear to exacerbate or mask the effect of groundwater pumping. In this study, four groundwater monitoring wells and five climate stations were examined for shifts in groundwater levels and precipitation changes. Through statistical analysis, significant precipitation increases were identified in the southern part of the study area which averaged 2.7 mm per year, but no significant change was determined for the northern portion. Bivariate analysis identified water level declines within the region in the years 1974, 1992 and 1999 for irrigated land covers. Multiple regression analysis explained, predicted and quantified the interaction between precipitation and pumping. Wells located in areas with many high capacity wells showed a decline in water levels of up to 1.28 meters. In the southern portion of the study area where increases in precipitation occurred, this decline was thought to be masked. Results for one region (Plover) agreed with a previously published calibrated groundwater model, which demonstrates that this statistical method may be used to separate the impact of groundwater pumping from changing precipitation, even where observation well data are not widely available.