为了在缓解阶梯效应的同时更好地保留去噪后图像的细节信息,提出一种基于增强高阶非凸全变分(higher order non-convex total variation,HONTV)模型的图像去噪算法。该算法将每一次去噪后的图像和原始图像取平均作为增强HONTV模型下一...为了在缓解阶梯效应的同时更好地保留去噪后图像的细节信息,提出一种基于增强高阶非凸全变分(higher order non-convex total variation,HONTV)模型的图像去噪算法。该算法将每一次去噪后的图像和原始图像取平均作为增强HONTV模型下一次循环的输入并更新参数,然后采用增广拉格朗日乘子法和交替方向乘子法进行循环求解,经过多次迭代,最终得到的去噪图像包含较多的细节信息。在基于全变分的图像去噪方法中,对添加不同标准差大小的高斯白噪声的测试图像和视频进行实验。实验结果表明,所提算法在视觉性能和客观评价指标方面均优于对比算法。展开更多
提出面向合成孔径雷达(Synthetic Aperture Radar,SAR)回波数据的复杂结构特征增强算法(Complex Structure Feature Enhancement Algorithm,CEA),面向SAR成像目标的复杂结构特征,算法利用高阶方向全变分(High-order Total Direction Var...提出面向合成孔径雷达(Synthetic Aperture Radar,SAR)回波数据的复杂结构特征增强算法(Complex Structure Feature Enhancement Algorithm,CEA),面向SAR成像目标的复杂结构特征,算法利用高阶方向全变分(High-order Total Direction Variation,HOTDV)正则算子表示,面向SAR成像目标的稀疏特征,算法用ℓ_(1)正则算子表示。算法利用交替方向多乘子法(Alternating Direction Method of Multipliers,ADMM)建立多正则约束优化框架,设计复杂结构分裂变量和稀疏分裂变量,并求出分裂变量解析更新解以实现SAR成像目标的复杂结构特征与稀疏特征的增强。多正则约束优化框架中的对偶分解保证多特征多任务处理能力,增广拉格朗日项的使用则保证了算法的收敛性和稳健性。最后,设计了仿真和实测SAR数据特征增强实验以验证算法的有效性,对比多种传统结构特征增强算法以验证所提复杂结构特征增强算法的优越性。展开更多
This paper presents an application of the sparse Bayesian learning(SBL)algorithm to linear inverse problems with a high order total variation(HOTV)sparsity prior.For the problem of sparse signal recovery,SBL often pro...This paper presents an application of the sparse Bayesian learning(SBL)algorithm to linear inverse problems with a high order total variation(HOTV)sparsity prior.For the problem of sparse signal recovery,SBL often produces more accurate estimates than maximum a posteriori estimates,including those that useℓ1 regularization.Moreover,rather than a single signal estimate,SBL yields a full posterior density estimate which can be used for uncertainty quantification.However,SBL is only immediately applicable to problems having a direct sparsity prior,or to those that can be formed via synthesis.This paper demonstrates how a problem with an HOTV sparsity prior can be formulated via synthesis,and then utilizes SBL.This expands the class of problems available to Bayesian learning to include,e.g.,inverse problems dealing with the recovery of piecewise smooth functions or signals from data.Numerical examples are provided to demonstrate how this new technique is effectively employed.展开更多
文摘为了在缓解阶梯效应的同时更好地保留去噪后图像的细节信息,提出一种基于增强高阶非凸全变分(higher order non-convex total variation,HONTV)模型的图像去噪算法。该算法将每一次去噪后的图像和原始图像取平均作为增强HONTV模型下一次循环的输入并更新参数,然后采用增广拉格朗日乘子法和交替方向乘子法进行循环求解,经过多次迭代,最终得到的去噪图像包含较多的细节信息。在基于全变分的图像去噪方法中,对添加不同标准差大小的高斯白噪声的测试图像和视频进行实验。实验结果表明,所提算法在视觉性能和客观评价指标方面均优于对比算法。
文摘提出面向合成孔径雷达(Synthetic Aperture Radar,SAR)回波数据的复杂结构特征增强算法(Complex Structure Feature Enhancement Algorithm,CEA),面向SAR成像目标的复杂结构特征,算法利用高阶方向全变分(High-order Total Direction Variation,HOTDV)正则算子表示,面向SAR成像目标的稀疏特征,算法用ℓ_(1)正则算子表示。算法利用交替方向多乘子法(Alternating Direction Method of Multipliers,ADMM)建立多正则约束优化框架,设计复杂结构分裂变量和稀疏分裂变量,并求出分裂变量解析更新解以实现SAR成像目标的复杂结构特征与稀疏特征的增强。多正则约束优化框架中的对偶分解保证多特征多任务处理能力,增广拉格朗日项的使用则保证了算法的收敛性和稳健性。最后,设计了仿真和实测SAR数据特征增强实验以验证算法的有效性,对比多种传统结构特征增强算法以验证所提复杂结构特征增强算法的优越性。
基金supported in part by NSF-DMS 1502640,NSF-DMS 1912685,AFOSR FA9550-18-1-0316Office of Naval Research MURI grant N00014-20-1-2595.
文摘This paper presents an application of the sparse Bayesian learning(SBL)algorithm to linear inverse problems with a high order total variation(HOTV)sparsity prior.For the problem of sparse signal recovery,SBL often produces more accurate estimates than maximum a posteriori estimates,including those that useℓ1 regularization.Moreover,rather than a single signal estimate,SBL yields a full posterior density estimate which can be used for uncertainty quantification.However,SBL is only immediately applicable to problems having a direct sparsity prior,or to those that can be formed via synthesis.This paper demonstrates how a problem with an HOTV sparsity prior can be formulated via synthesis,and then utilizes SBL.This expands the class of problems available to Bayesian learning to include,e.g.,inverse problems dealing with the recovery of piecewise smooth functions or signals from data.Numerical examples are provided to demonstrate how this new technique is effectively employed.