Traditional Chinese villages,vital carriers of traditional culture,have faced significant alterations due to urbanization in recent years,urgently necessitating artificial intelligence data updates.This study integrat...Traditional Chinese villages,vital carriers of traditional culture,have faced significant alterations due to urbanization in recent years,urgently necessitating artificial intelligence data updates.This study integrates high spatial resolution remote sensing imagery with deep learning techniques,proposing a novel method for identifying rooftops of traditional Chinese village buildings using high-definition remote sensing images.Using 0.54 m spatial resolution imagery of traditional village areas as the data source,this method analyzes the geometric and spectral image characteristics of village building rooftops.It constructs a deep learning feature sample library tailored to the target types.Employing a semantically enhanced version of the improved Mask R-CNN(Mask Region-based Convolutional Neural Network)for building recognition,the study conducts experiments on localized imagery from different regions.The results demonstrated that the modified Mask R-CNN effectively identifies traditional village building rooftops,achieving an of 0.7520 and an of 0.7400.It improves the current problem of misidentification and missed detection caused by feature heterogeneity.This method offers a viable and effective approach for industrialized data monitoring of traditional villages,contributing to their sustainable development.展开更多
[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spat...[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spatial resolution, KRD control projects in Disi River basin in Puan County were monitored, that is, information of the project construction in the study area was extracted using supervised classification and hu- man-computer interactive interpretation, and the monitoring results were testified with the aid of GPS. [Result] It was feasible to monitor KRD con- trol projects in Disi River basin based on remote sensing images with medium and high resolution, and the monitoring accuracy was satisfactory, reaching above 80% or 90%, so the method is worthy of popularizing. [ Conclusion] Remote sensing images with medium and high resolution can be used to monitor other KRD control Droiects.展开更多
文摘Traditional Chinese villages,vital carriers of traditional culture,have faced significant alterations due to urbanization in recent years,urgently necessitating artificial intelligence data updates.This study integrates high spatial resolution remote sensing imagery with deep learning techniques,proposing a novel method for identifying rooftops of traditional Chinese village buildings using high-definition remote sensing images.Using 0.54 m spatial resolution imagery of traditional village areas as the data source,this method analyzes the geometric and spectral image characteristics of village building rooftops.It constructs a deep learning feature sample library tailored to the target types.Employing a semantically enhanced version of the improved Mask R-CNN(Mask Region-based Convolutional Neural Network)for building recognition,the study conducts experiments on localized imagery from different regions.The results demonstrated that the modified Mask R-CNN effectively identifies traditional village building rooftops,achieving an of 0.7520 and an of 0.7400.It improves the current problem of misidentification and missed detection caused by feature heterogeneity.This method offers a viable and effective approach for industrialized data monitoring of traditional villages,contributing to their sustainable development.
基金Supported by the Key Science and Technology Projects of Guizhou Province,China[(2007)3017,(2008)3022]Major Special Project of Guizhou Province,China(2006-6006-2)
文摘[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spatial resolution, KRD control projects in Disi River basin in Puan County were monitored, that is, information of the project construction in the study area was extracted using supervised classification and hu- man-computer interactive interpretation, and the monitoring results were testified with the aid of GPS. [Result] It was feasible to monitor KRD con- trol projects in Disi River basin based on remote sensing images with medium and high resolution, and the monitoring accuracy was satisfactory, reaching above 80% or 90%, so the method is worthy of popularizing. [ Conclusion] Remote sensing images with medium and high resolution can be used to monitor other KRD control Droiects.