DDGS high speed camera is an improved version of the multispark system. In this system the time delay and the frame interval can be set arbitrarily from 5 mu s to 10000 mu s, and the intervals may be equal or not. The...DDGS high speed camera is an improved version of the multispark system. In this system the time delay and the frame interval can be set arbitrarily from 5 mu s to 10000 mu s, and the intervals may be equal or not. The modified spark gaps can provide point flashes that are small enough in size and strong enough in light for both dynamic caustics and dynamic photo-elasticity. In addition, this system can be changed easily to observe the Bow by schlieren method, Thus, this optical system is suitable to investigate many dynamic problems in the fields of solid and fluid mechanics.展开更多
A tangential fast visible camera has been set up in EAST tokamak for the study of edge MHD instabilities such as ELM. To determine the 3-D information from CCD images, Tsai's two-stage technique was utilized to calib...A tangential fast visible camera has been set up in EAST tokamak for the study of edge MHD instabilities such as ELM. To determine the 3-D information from CCD images, Tsai's two-stage technique was utilized to calibrate the high-speed camera imaging system for ELM study. By applying tiles of the passive stabilizers in the tokamak device as the calibration pattern, transformation parameters for transforming from a 3-D world coordinate system to a 2-D image coordinate system were obtained, including the rotation matrix, the translation vector, the focal length and the lens distortion. The calibration errors were estimated and the results indicate the reliability of the method used for the camera imaging system. Through the calibration, some information about ELM filaments, such as positions and velocities were obtained from images of H-mode CCD videos.展开更多
Synergic movement of finger's joints provides human hand tremendous dexterities,and the detection of kinematics parameters is critical to describe and evaluate the kinesiology functions of the fingers.The present ...Synergic movement of finger's joints provides human hand tremendous dexterities,and the detection of kinematics parameters is critical to describe and evaluate the kinesiology functions of the fingers.The present work is the attempt to investigate how the angular velocity and angular acceleration of the joints of index finger vary with respect to time during conducting a motor task.A high-speed video camera has been employed to visually record the movement of index finger,and miniaturized(5-mm diameter) reflective markers have affixed to the subject's index finger on the side close to thumb and dorsum of thumb at different joint landmarks.Captured images have been reviewed frame by frame to get the coordinate values of each joint,and the angular displacements,angular velocities and angular acceleration can be obtained with triangle function.The experiment results show that the methods here can detect the kinematics parameters of index finger joints during moving,and can be a valid route to study the motor function of index finger.展开更多
The impact and penetration of a projectile in a particle-laden space, which are expected to have frequently occurred during the formation of the solar system and will occur in the case of an impact probe for future pl...The impact and penetration of a projectile in a particle-laden space, which are expected to have frequently occurred during the formation of the solar system and will occur in the case of an impact probe for future planetary exploration, were experimentally simulated by using the ballistic range. A two-dimensional sheet made from small glass beads or emery powder was formed by the free-falling device through a long slit in the test chamber evacuated down to about 35 Pa. A polycarbonate projectile of a hemi-sphere-cylinder or sphere shape with the mass and diameter about 4 g and 25 mm, respectively, was launched at the velocity up to 430 m/s, and the phenomena were observed by the high-speed camera at 20,000 fps. From a series of images, the bow-shock-wave-like laterally facing U-shaped pattern over the projectile and the absence of particles in the trail behind it were clearly seen. At the impact of the particles on the projectile surface, fine grains were formed due to the destructive collision and injected outward from the projectile. The images obtained by different lighting methods including the laser light sheet were compared. The effects of the particle diameter, its material and the impact velocity were also investigated.展开更多
For application to exploration under the surface of icy objects in the solar system, the penetration of an impact probe into an icy target was experimentally simulated by using the ballistic range. Slender projectiles...For application to exploration under the surface of icy objects in the solar system, the penetration of an impact probe into an icy target was experimentally simulated by using the ballistic range. Slender projectiles with a cylindrical body and various nose shapes were tested at the impact velocity 130 - 420 m/s. The motion of the penetrator, fragmentation of ice and crater forming were observed by the high-speed camera. It revealed that the crown-shaped ejection was made for a short time after the impact and then the outward normal jet-like stream of ice pieces continued for much longer time. The concave shape of the crater was successfully visualized by pouring the plaster into it. The two-stage structure, the pit and the spall, was clearly confirmed. The rim was not formed around the crater. Observation of the crater surface and the ice around the trace of the penetrator shows that both crushing into smaller ice pieces and recompression into ice blocks are caused by the forward motion of the penetrator. In case of a body with a flow-through duct, ice pieces entering the inlet at the nose tip were ejected from the tail, resulting in relaxation of the impact force. The correlation of the penetration distance and the crater diameter with the impact velocity was investigated.展开更多
文摘DDGS high speed camera is an improved version of the multispark system. In this system the time delay and the frame interval can be set arbitrarily from 5 mu s to 10000 mu s, and the intervals may be equal or not. The modified spark gaps can provide point flashes that are small enough in size and strong enough in light for both dynamic caustics and dynamic photo-elasticity. In addition, this system can be changed easily to observe the Bow by schlieren method, Thus, this optical system is suitable to investigate many dynamic problems in the fields of solid and fluid mechanics.
基金supported by National Natural Science Foundation of China(No.11275047)the National Magnetic Confinement Fusion Science Program of China(No.2013GB102000)
文摘A tangential fast visible camera has been set up in EAST tokamak for the study of edge MHD instabilities such as ELM. To determine the 3-D information from CCD images, Tsai's two-stage technique was utilized to calibrate the high-speed camera imaging system for ELM study. By applying tiles of the passive stabilizers in the tokamak device as the calibration pattern, transformation parameters for transforming from a 3-D world coordinate system to a 2-D image coordinate system were obtained, including the rotation matrix, the translation vector, the focal length and the lens distortion. The calibration errors were estimated and the results indicate the reliability of the method used for the camera imaging system. Through the calibration, some information about ELM filaments, such as positions and velocities were obtained from images of H-mode CCD videos.
基金Supported by the National Natural Science Foundation of China (30770546 )Natural Science Foundation of Chongqing(2006BB2043,2007BB5148)
文摘Synergic movement of finger's joints provides human hand tremendous dexterities,and the detection of kinematics parameters is critical to describe and evaluate the kinesiology functions of the fingers.The present work is the attempt to investigate how the angular velocity and angular acceleration of the joints of index finger vary with respect to time during conducting a motor task.A high-speed video camera has been employed to visually record the movement of index finger,and miniaturized(5-mm diameter) reflective markers have affixed to the subject's index finger on the side close to thumb and dorsum of thumb at different joint landmarks.Captured images have been reviewed frame by frame to get the coordinate values of each joint,and the angular displacements,angular velocities and angular acceleration can be obtained with triangle function.The experiment results show that the methods here can detect the kinematics parameters of index finger joints during moving,and can be a valid route to study the motor function of index finger.
文摘The impact and penetration of a projectile in a particle-laden space, which are expected to have frequently occurred during the formation of the solar system and will occur in the case of an impact probe for future planetary exploration, were experimentally simulated by using the ballistic range. A two-dimensional sheet made from small glass beads or emery powder was formed by the free-falling device through a long slit in the test chamber evacuated down to about 35 Pa. A polycarbonate projectile of a hemi-sphere-cylinder or sphere shape with the mass and diameter about 4 g and 25 mm, respectively, was launched at the velocity up to 430 m/s, and the phenomena were observed by the high-speed camera at 20,000 fps. From a series of images, the bow-shock-wave-like laterally facing U-shaped pattern over the projectile and the absence of particles in the trail behind it were clearly seen. At the impact of the particles on the projectile surface, fine grains were formed due to the destructive collision and injected outward from the projectile. The images obtained by different lighting methods including the laser light sheet were compared. The effects of the particle diameter, its material and the impact velocity were also investigated.
文摘For application to exploration under the surface of icy objects in the solar system, the penetration of an impact probe into an icy target was experimentally simulated by using the ballistic range. Slender projectiles with a cylindrical body and various nose shapes were tested at the impact velocity 130 - 420 m/s. The motion of the penetrator, fragmentation of ice and crater forming were observed by the high-speed camera. It revealed that the crown-shaped ejection was made for a short time after the impact and then the outward normal jet-like stream of ice pieces continued for much longer time. The concave shape of the crater was successfully visualized by pouring the plaster into it. The two-stage structure, the pit and the spall, was clearly confirmed. The rim was not formed around the crater. Observation of the crater surface and the ice around the trace of the penetrator shows that both crushing into smaller ice pieces and recompression into ice blocks are caused by the forward motion of the penetrator. In case of a body with a flow-through duct, ice pieces entering the inlet at the nose tip were ejected from the tail, resulting in relaxation of the impact force. The correlation of the penetration distance and the crater diameter with the impact velocity was investigated.