期刊文献+
共找到741篇文章
< 1 2 38 >
每页显示 20 50 100
Wear Patterns and Mechanisms of Cutting Tools in High Speed Face Milling
1
作者 LIU Zhan-qiang, AI Xing, ZHANG Hui, WANG Zun-tong, WAN Yi (School of Mechanical Engineering, Shandong University, Jinan 250061, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期58-,共1页
High speed machining has received an important interest because it leads to an increase of productivity and a better workpiece surface quality. However, at high cutting speeds, the tool wear increases dramatically due... High speed machining has received an important interest because it leads to an increase of productivity and a better workpiece surface quality. However, at high cutting speeds, the tool wear increases dramatically due to the high temperature at the tool-workpiece interface. Tool wear impairs the surface finish and hence the tool life is reduced. That is why an important objective of metal cutting research has been the assessment of tool wear patterns and mechanisms. In this paper, wear performances of PCBN tool, ceramic tool, coated carbide tool and fine-grained carbide tool in high speed face milling were presented when cutting cast iron, 45# tempered carbon steel and 45# hardened carbon steel. Tool wear patterns were examined through a tool-making microscope. The research results showed that tool wear types differed in various matching of materials between cutting tool and workpiece. The dominant wear patterns observed were rake face wear, flank wear, chipping, fracture and breakage. The main wear mechanisms were mechanical friction, adhesion, diffusion and chemical wear promoted by cutting forces and high cutting temperature. Hence, the important considerations of high speed cutting tool materials are high heat-resistance and wear-resistance, chemical stability as well as resistance to failure of coatings. The research results will be great benefit to the design and the selection of tool materials and control of tool wear in high-speed machining processes. 展开更多
关键词 cutting tool WEAR high speed machining face milling
下载PDF
CUTTING REGULARITY AND DISCHARGE CHARACTERISTICS BY USING COMPOSITE COOLING LIQUID IN WIRE CUT ELECTRICAL DISCHARGE MACHINE WITH HIGH WIRE TRAVELING SPEED 被引量:11
2
作者 LIU Zhidong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第5期41-45,共5页
The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characte... The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid. 展开更多
关键词 Wire cut electrical discharge machine with high wire traveling speed Composite cooling liquid Discharge characteristic cutting regularity
下载PDF
High Speed Cutting Inconel 718 with Coated Carbide and Ceramic Inserts 被引量:1
3
作者 LI Liang, HE Ning, WANG Min, WANG Zhi-gang (College of Mechanical and Electrical, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期44-45,共2页
High speed machining (HSM) technology is one of important aspects of advanced manufacturing technology. Nickel-based superalloys have been widely used in the aircraft and nuclear industry due to their exceptional ther... High speed machining (HSM) technology is one of important aspects of advanced manufacturing technology. Nickel-based superalloys have been widely used in the aircraft and nuclear industry due to their exceptional thermal resistance and the ability to retain mechanical properties at elevated temperatures of service environment over 700 ℃. However, they are classified as difficult-to-cut materials due to their high shear strength, work hardening tendency, highly abrasive carbide particles in the microstructure, strong tendency to weld and form built-up edge and low thermal conductivity. They have a tendency to maintain their strength at high temperature that is generated during machining. The Inconel 718 workpiece material used in the experiment was in the hot forged and annealed condition. The commercially available inserts (all inserts were made by Kennametal Inc.) were selected for the tests, a PVD TiAlN coated carbide, a CVD/PVD TiN/TiCN/TiN coated carbide and a CVD Al 2O 3/TiC/TiCN coated carbide were used at the cutting speed range about 50~100 m/min. Three kinds Sialon grade inserts with various geometry and cutting angles were used at the cutting speed range from 100 m/min to 300 m/min. For evaluating the inserts machinability when high speed cutting Inconel 718, Taylor Formula within certain cutting speeds, an high speed cutting experiment of tool life was carried out to establish the models of tool life by means of rapid facing turning test. The conclusions drawn from the turning of Inconel 718 with silicon nitride based ceramic; PVD and CVD coated carbide inserts are as follows: Studies on tool wear in high speed machining. The thorough investigations and studies were made on the tool wear form, wear process and wear mechanism in high speed cutting of difficult-to-machine materials with ceramic tools and with coated carbides. The major wear mechanisms of nickel-based alloys are interactions of abrasive wear, adhesion wear, micro-breakout and chipping. Optimization analysis on the application of high speed machining. Based on the experimental results, the optimal cutting parameters were determined for machining of Inconel 718 at high speed. The recommendation of tool inserts for high speed cutting inconel 718 were ceramic inserts of KY2000 with negative rake angle and KY2100 with round type, the PVD coated carbide insert KC7310 was recommended for its lower price. 展开更多
关键词 tool wear coated carbide tools ceramic tools Inconel 718 high speed cutting
下载PDF
Mesoplasticity Approach to Studies of the Cutting Mechanism in Ultra-precision Machining 被引量:2
4
作者 LEE WB Rongbin WANG Hao +2 位作者 TO Suet CHEUNG Chi Fai CHAN Chang Yuen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第2期219-228,共10页
There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plast... There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plasticity and continuum mechanics. Very few attempts, however, have been reported in ultra-precision machining studies. A mesoplasticity approach advocated by Lee and Yang is adopted by the authors and is successfully applied to studies of the micro-cutting mechanisms in ultra-precision machining. Traditionally, the shear angle in metal cutting, as well as the cutting force variation, can only be determined from cutting tests. In the pioneering work of the authors, the use of mesoplasticity theory enables prediction of the fluctuation of the shear angle and micro-cutting force, shear band formation, chip morphology in diamond turning and size effect in nano-indentation. These findings are verified by experiments. The mesoplasticity formulation opens up a new direction of studies to enable how the plastic behaviour of materials and their constitutive representations in deformation processing, such as machining can be predicted, assessed and deduced from the basic properties of the materials measurable at the microscale. 展开更多
关键词 ultra-precision machining cutting mechanism mesoplasticity shear angle prediction size effect micro-cutting force variation high frequency tool-tip vibration
下载PDF
Tool Failure Analysis in High Speed Milling of Titanium Alloys
5
作者 MEYER Kevin YU Cindy 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S1期137-142,共6页
In high speed milling of titanium alloys the high rate of tool failure is the main reason for its high manufacturing cost. In this study,fractured tools which were used in a titanium alloys 5-axis milling process have... In high speed milling of titanium alloys the high rate of tool failure is the main reason for its high manufacturing cost. In this study,fractured tools which were used in a titanium alloys 5-axis milling process have been observed both in the macro scale using a PG-1000 light microscope and in the micro scale using a Scanning Electron Microscope (SEM) respectively. These observations indicate that most of these tool fractures are the result of tool chipping. Further analysis of each chipping event has shown that beachmarks emanate from points on the cutting edge. This visual evidence indicates that the cutting edge is failing in fatigue due to cyclical mechanical and/or thermal stresses. Initial analyses explaining some of the outlying conditions for this phenomenon are discussed. Future analysis regarding determining the underlying causes of the fatigue phenomenon is then outlined. 展开更多
关键词 TITANIUM alloys high speed MILLING cutting edge CHIPPING tool failure analysis
下载PDF
HIGH SPEED MILLING OF GRAPHITE ELECTRODE WITH ENDMILL OF SMALL DIAMETER 被引量:14
6
作者 WANG Chengyong ZHOU Li +1 位作者 FU Hao HU Zhouling 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第4期27-31,共5页
Graphite becomes the prevailing electrode material in electrical discharging machining (EDM)currently.Orthogonal cutting experiments are carried out to study the characteristics of graphite chip formation process.Hi... Graphite becomes the prevailing electrode material in electrical discharging machining (EDM)currently.Orthogonal cutting experiments are carried out to study the characteristics of graphite chip formation process.High speed milling experiments are conducted to study tool wear and cutting forces.The results show that depth of cut has great influence on graphite chip formation.The removal process of graphite in high speed milling is the mutual result of cutting and grinding process. Graphite is prone to cause severe abrasion wear to coated carbide endmills due to its high abrasiveness nature.The major patterns of tool wear are flank wear,rake wear,micro-chipping and breakage. Cutting forces can be reduced by adoption of higher cutting speed,moderate feed per tooth,smaller radial and axial depths of cut,and up cutting. 展开更多
关键词 high speed milling Graphite electrode tool wear cutting force
下载PDF
High efficient processing area of difficult-to-machine materials by using temperature-horsepower criterion
7
作者 ANGELA S G ZHANG Dan SERGEY B V MARINA K A 《黑龙江科技大学学报》 CAS 2015年第4期386-393,共8页
关键词 俄语学习 外语学习 学习方法 俄语翻译
下载PDF
Grey Relational Optimization of Turning Parameters in Dry Machining of Austenitic Stainless Steel Using Zr Based Coated Tools
8
作者 Kaushik Vijaya Prasad Kishore Triambak Kashyap +3 位作者 Madapat Job Richard Posina Gerard Prabhu Rao Abhishek Rajole Rabara Hiren 《Open Journal of Applied Sciences》 2017年第7期337-347,共11页
The present work aims at the microstructural characterization of TiAlZrN/ Al2O3 and TiAlZrN/Si3N4 coatings deposited via lateral rotating cathodes. The coatings were deposited using Lateral Rotating Cathodes (LARC) te... The present work aims at the microstructural characterization of TiAlZrN/ Al2O3 and TiAlZrN/Si3N4 coatings deposited via lateral rotating cathodes. The coatings were deposited using Lateral Rotating Cathodes (LARC) technology. The deposited coatings were studied for its cross sectional morphology using scanning electron microscopy. Energy Dispersive Spectrometry was also conducted along the cross section to determine the elemental composition. Micro Vickers hardness test was conducted to determine the hardness of the coatings. The scanning electron microscope images showed that TiAlZrN/Al2O3 coatings showed preferred columnar grain orientation with multilayered structure while TiAlZrN/Si3N4 coatings exhibit a dense grain structure. The TiAlZrN/Si3N4 coating shows a hardness of 31.58 GPa while TiAlZrN/Al2O3 coating shows a hardness of 25.40 GPa. Dry turning tests were performed on AISI 304 stainless steel. The TiAlZrN/Si3N4 coatings show reduced flank wear. Both the coatings even under severe cutting conditions impart surface roughness of less than 1.5 μm. 展开更多
关键词 Coatings LATERAL Rotating Cathodes DRY machining high speed machining Coated cutting tools FLANK Wear DRY TURNING
下载PDF
Research on dynamic characteristics of high speed milling force based on discontinuous functions
9
作者 С.В.Биленко П.А.Саблин +1 位作者 Чжан Дань 《黑龙江科技大学学报》 CAS 2015年第1期75-81,共7页
This paper begins with a consideration of the influence of feed per revolution upon the depth of a cut and the impact of the machining method on the direction of tool pressure average and subsequent description of eff... This paper begins with a consideration of the influence of feed per revolution upon the depth of a cut and the impact of the machining method on the direction of tool pressure average and subsequent description of efficient cutting directions and the methods for load cell orientation. The paper goes further into the key conclusions concerning the dependences of the cutting depth at high-speed milling as in the case of discontinuous functions. It ends with recommendations offered for positioning of load cells for cut-up milling and cut-down milling. 展开更多
关键词 high-speed milling load cells toolS tool pressure depth of cut
下载PDF
Cutting force and its frequency spectrum characteristics in high speed milling of titanium alloy with a polycrystalline diamond tool 被引量:4
10
作者 Peng LIU Jiu-hua XU Yu-can FU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2011年第1期56-62,共7页
In this paper, a series of experiments were performed by high speed milling of Ti-6.5Al-2Zr-1Mo-1V (TA15) by use of polycrystalline diamond (PCD) tools. The characteristics of high speed machining (HSM) dynamic millin... In this paper, a series of experiments were performed by high speed milling of Ti-6.5Al-2Zr-1Mo-1V (TA15) by use of polycrystalline diamond (PCD) tools. The characteristics of high speed machining (HSM) dynamic milling forces were investi- gated. The effects of the parameters of the process, i.e., cutting speed, feed per tooth, and depth of axial cut, on cutting forces were studied. The cutting force signals under different cutting speed conditions and different cutting tool wear stages were analyzed by frequency spectrum analysis. The trend and frequency domain aspects of the dynamic forces were evaluated and discussed. The results indicate that a characteristic frequency in cutting force power spectrum does in fact exist. The amplitudes increase with the increase of cutting speed and tool wear level, which could be applied to the monitoring of the cutting process. 展开更多
关键词 cutting force high speed milling Polycrystalline diamond (PCD) tool Frequency spectrum analysis Titanium alloy
原文传递
高速铣削-激光切割机床数控加工高精度控制技术
11
作者 任忠先 张杰 +1 位作者 魏国丰 杜雨馨 《激光杂志》 CAS 北大核心 2024年第8期208-212,共5页
激光切割机铣削过程中会因工件变形导致表面出现凹凸不平或波浪状,表面局部区域高低不等,致使机床的浮动轴偏离实际运动轨迹,影响工件铣削加工的质量。为此,提出一种高速铣削-激光切割机床数控加工高精度控制技术。采用运动学理论、矩... 激光切割机铣削过程中会因工件变形导致表面出现凹凸不平或波浪状,表面局部区域高低不等,致使机床的浮动轴偏离实际运动轨迹,影响工件铣削加工的质量。为此,提出一种高速铣削-激光切割机床数控加工高精度控制技术。采用运动学理论、矩阵转换函数建立激光切割机床运动数学模型,利用PLC控制器、伺服驱动器及电机等搭建激光切割机床高速铣削加工控制模型,使用负反馈控制算法、位移误差函数控制机床铣削加工浮动轴运动,即当浮动轴执行上浮或者下浮运动时,若浮动轴运动轨迹偏离预设轨迹,调节PLC控制器参数来驱动电机控制作业,使其反向运动,直到落在预设轨迹上,实现铣削加工的高精度控制。实验结果表明,所提技术工件的铣削加工质量高,高速铣削过程中上浮点、下浮点控制误差最大值分别为6 mm、6 mm,铣削加工控制的响应时间为6.8 ms。 展开更多
关键词 高速铣削 激光切割机床 浮动轴 运动轨迹
下载PDF
高速线切割机床上丝辅助装置设计
12
作者 郭秀华 王子 +3 位作者 雷树硕 蔡昊辰 周夏成 陈祥林 《机械工程与自动化》 2024年第6期200-202,共3页
现有高速线切割机床的上丝装置在上丝过程中易发生断丝与张紧力不均衡现象,降低了机床切削稳定性和工件加工质量。通过分析现有装置的结构,提出增加推力球轴承,以防止锁紧螺母跟转而导致储丝盘卡顿引起断丝;根据丝线的拉力计算出弹簧压... 现有高速线切割机床的上丝装置在上丝过程中易发生断丝与张紧力不均衡现象,降低了机床切削稳定性和工件加工质量。通过分析现有装置的结构,提出增加推力球轴承,以防止锁紧螺母跟转而导致储丝盘卡顿引起断丝;根据丝线的拉力计算出弹簧压缩量及其他相关参数。经I-DEAS软件建模、装配、仿真表明,该装置可以满足生产要求。 展开更多
关键词 高速线切割机床 上丝装置 推力球轴承 弹簧 张紧力
下载PDF
钛合金高速超声振动车削表面完整性及耐磨损性能试验研究
13
作者 彭振龙 张翔宇 +2 位作者 王刚 徐广涛 赵明皞 《航空制造技术》 CSCD 北大核心 2024年第9期30-36,50,共8页
在可替代性弱且常被用于制造航空发动机关键部件的前提下,钛合金等难加工材料的高效高质切削面临挑战。针对钛合金Ti-6Al-4V加工表面完整性不佳和使役性能有待提升难题,开展了钛合金Ti-6Al-4V的高速车削试验,分析了高速超声振动切削技... 在可替代性弱且常被用于制造航空发动机关键部件的前提下,钛合金等难加工材料的高效高质切削面临挑战。针对钛合金Ti-6Al-4V加工表面完整性不佳和使役性能有待提升难题,开展了钛合金Ti-6Al-4V的高速车削试验,分析了高速超声振动切削技术对钛合金Ti-6Al-4V表面完整性和已加工表面耐磨损性能的改善效果,进而为钛合金Ti-6Al-4V的高质量加工提供理论支撑。结果表明,相比于普通切削,高速超声振动切削有效降低了钛合金Ti-6Al-4V的表面粗糙度,提高了表面强度和表面残余压应力,以及增强了耐磨损性能。 展开更多
关键词 钛合金 高速切削 表面完整性 耐磨损性能 超声振动车削
下载PDF
Inconel 718镍基高温合金高速切削仿真与刀具磨损机理研究
14
作者 崔恩照 赵军 郑光明 《工具技术》 北大核心 2024年第8期107-112,共6页
Inconel 718高温合金因强度高和导热系数低导致其切削加工性较差,采用陶瓷刀具高速切削Inconel 718时存在磨损快、寿命短等问题。通过仿真和试验对比分析,研究切削用量对切削力、切削温度和刀具磨损的影响规律,并获取高速切削过程中刀... Inconel 718高温合金因强度高和导热系数低导致其切削加工性较差,采用陶瓷刀具高速切削Inconel 718时存在磨损快、寿命短等问题。通过仿真和试验对比分析,研究切削用量对切削力、切削温度和刀具磨损的影响规律,并获取高速切削过程中刀具前、后刀面温度场和应力场的动态分布规律,为镍基高温合金的高速切削及刀具设计制备提供指导依据。结果表明,切削速度对切削力和切削温度的影响程度小于背吃刀量和进给量;在选择切削参数时,优先选取较高的切削速度;沟槽磨损是抑制陶瓷刀具耐用度的关键因素,主要失效机理是黏结磨损。 展开更多
关键词 Inconel 718 高速加工 切削仿真 切削力 刀具磨损
下载PDF
复杂结构的铝合金锻件高速切削加工方法研究 被引量:1
15
作者 王浩丞 锁聪 赵丹 《机械工程与自动化》 2024年第2期98-99,102,共3页
以支臂零件为例,展示了零件的典型结构,并对零件进行了工艺性分析。根据零件的特点,从零件的毛坯形式、工艺装备的设计、加工设备的选择以及典型的加工工序等方面出发,设计了一套适宜的加工方案。基于高速切削加工技术的特点,详细描述... 以支臂零件为例,展示了零件的典型结构,并对零件进行了工艺性分析。根据零件的特点,从零件的毛坯形式、工艺装备的设计、加工设备的选择以及典型的加工工序等方面出发,设计了一套适宜的加工方案。基于高速切削加工技术的特点,详细描述了零件在高速切削情况下的加工与编程方法,并通过对零件的实际加工,验证了加工方案的可行性,进而总结出复杂结构的铝合金锻件数控高速切削的加工方法及合理的切削参数。 展开更多
关键词 铝合金 高速切削 锻件 切削参数 加工方案
下载PDF
Tool Life and Surface Integrity in High-speed Milling of Titanium Alloy TA15 with PCD/PCBN Tools 被引量:39
16
作者 SU Honghua LIU Peng +1 位作者 FU Yucan XU Jiuhua 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2012年第5期784-790,共7页
Titanium alloys are widely used in aeronautics that demand a good combination of high strength, good corrosion resistance and low mass. The mechanical properties lead to challenges in machining operations such as high... Titanium alloys are widely used in aeronautics that demand a good combination of high strength, good corrosion resistance and low mass. The mechanical properties lead to challenges in machining operations such as high process temperature as well as rapidly increasing tool wear. The conventional tool materials are not able to maintain their hardness and other mechanical prop- erties at higher cutting temperatures encountered in high speed machining. In this work, the new material tools, which are poly- crystalline diamond (PCD) and polycrystalline cubic boron nitride (PCBN) tools, are used in high-speed milling of Ti-6.5AI-2Zr-IMo-IV (TA15) alloy. The performance and wear mechanism of the tools are investigated. Compared to PCBN tool, PCD tool has a much longer tool life, especially at higher cutting speeds. Analyses based on the SEM and EDX suggest that attrition, adhesion and diffusion are the main wear mechanisms of PCD and PCBN tools in high-speed milling of TA 15. Oxida- tion wear is also observed at PCBN tool/workpiece interface. Roughness, defects, micro-hardness and microstructure of the ma- chined surface are investigated. The recorded surface roughness values with PCD/PCBN tools are bellow 0.3 μm at initial and steady cutting stage. Micro-hardness analysis shows that the machined surface hardening depth with PCD and PCBN tools is small. There is no evidence of sub-surface defects with PCD and PCBN tools. It is concluded that for TA15 alloy, high-speed milling can be carried out with PCD/PCBN tools. 展开更多
关键词 high-speed milling titanium alloys cutting tools WEAR surface integrity
原文传递
Tool wear during high speed turning in situ TiC_p/TiB_w hybrid reinforced Ti-6Al-4V matrix composite 被引量:2
17
作者 Ge Yingfei Xu Jiuhua Huan Haixiang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第5期1425-1435,共11页
Chipping, adhesive wear, abrasive wear and crater wear are prevalent for both the polycrystalline diamond (PCD) and the carbide tools during high speed turning of TiCp/TiBw hybrid reinforced Ti-6Al-4V (TC4) matrix... Chipping, adhesive wear, abrasive wear and crater wear are prevalent for both the polycrystalline diamond (PCD) and the carbide tools during high speed turning of TiCp/TiBw hybrid reinforced Ti-6Al-4V (TC4) matrix composite (TMCs). The combined effects of abrasive wear and diffusion wear caused the big crater on PCD and carbide tool rake face. Compared to the PCD, bigger size of crater was found on the carbide tool due to much higher cutting temperature and the violent chemical reaction between the Ti element in the workpiece and the WC in the tool. However, the marks of the abrasive wear looked much slighter or even could not be observed on the carbide tool especially when low levels of cutting parameters were used, which attributes to much lower hardness and smaller size of WC combined with more significant chemical degradation of carbide. When cutting TC4 using PCD tool, notch wear was the most significant wear pattern which was not found when cutting the TMCs. However, chipping, adhesive wear and crater wear were much milder when compared to the cutting of titanium matrix composite. Due to the absence of abrasive wear when cutting TC4, the generated titanium carbide on the PCD protected the tool from fast wear, which caused that the tool life for TC4 was 6-10 times longer than that for TMCs. 展开更多
关键词 Carbide tool high speed cutting PCD tool Titanium matrix composite tool wear TURNING
原文传递
基于高速钢对TC4钛合金的车削研究
18
作者 余正存 岳瑞飞 +1 位作者 王双双 马国良 《机械研究与应用》 2024年第5期37-39,42,共4页
文章针对TC4钛合金车削进行了探索性研究,并对TC4钛合金材料进行了分析。通过对刀具参数、切削参数、切削液的合理选择,以及多次车削试验和分析,确定了适用于TC4钛合金材料零件的高速钢车削加工方法,并验证了不同的参数在车削过程中对... 文章针对TC4钛合金车削进行了探索性研究,并对TC4钛合金材料进行了分析。通过对刀具参数、切削参数、切削液的合理选择,以及多次车削试验和分析,确定了适用于TC4钛合金材料零件的高速钢车削加工方法,并验证了不同的参数在车削过程中对钛合金零件加工的影响。该研究为钛合金材料零件采用高速钢车削提供了可参考的相关依据,具有一定的应用价值。 展开更多
关键词 车削 高速钢 刀具材料 切削液 钛合金
下载PDF
钻削高速钢钻头的寿命研究
19
作者 张金刚 张杰 +1 位作者 李军三 曾嘉 《现代制造技术与装备》 2024年第1期173-175,共3页
高速钢切削加工性能差,采用传统的加工方法钻削高速钢零件容易出现刀具寿命短、易损坏等问题。文章从刀具结构、涂层选择、加工冷却方式、加工程序等方面进行了针对性优化。经过多次切削试验表明,优化后钻头刀具寿命明显延长,钻头加工... 高速钢切削加工性能差,采用传统的加工方法钻削高速钢零件容易出现刀具寿命短、易损坏等问题。文章从刀具结构、涂层选择、加工冷却方式、加工程序等方面进行了针对性优化。经过多次切削试验表明,优化后钻头刀具寿命明显延长,钻头加工时所受轴向钻削力减少约50%。 展开更多
关键词 高速钢 钻削 刀具寿命 钻头结构 冷却液 切削参数
下载PDF
超声椭圆振动切削装置应用现状及发展综述
20
作者 郑锴 胡高峰 +2 位作者 辛文东 逯俊体 张敏 《机械研究与应用》 2024年第1期177-181,共5页
椭圆振动切削装置可很好地解决高性能材料的硬脆性加工难的问题。椭圆振动切削装置通过给刀具施加超声振动使刀具与工件分离,这种方式可降低切削力,提高工件表面的加工质量。该文首先介绍了该装置的切削原理,其次对其结构特点和研究现... 椭圆振动切削装置可很好地解决高性能材料的硬脆性加工难的问题。椭圆振动切削装置通过给刀具施加超声振动使刀具与工件分离,这种方式可降低切削力,提高工件表面的加工质量。该文首先介绍了该装置的切削原理,其次对其结构特点和研究现状做了分析,最后对该装置的性能特性进行了总结。目的是通过对这类装置的介绍和性能分析,使超精密加工领域的相关科研工作者和技术人员较好地掌握类似装置的性能特性,为后续加工装置的优化设计提供理论参考。 展开更多
关键词 高性能材料 超精密加工 超声振动 超声椭圆振动切削装置
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部