Due to the effective precipitation strengthening effect of the β phase, Mg-Gd alloys exhibit excellent room temperature mechanical behaviors. However, when served at high temperatures, the metastable β phase will tr...Due to the effective precipitation strengthening effect of the β phase, Mg-Gd alloys exhibit excellent room temperature mechanical behaviors. However, when served at high temperatures, the metastable β phase will transform to other phases, resulting in severe performance degradation. In this study, we investigated the effect of precipitation state achieved by different heat treatments on high temperature tensile and creep behaviors of the Mg-15Gd alloy by comparing the properties of the as-cast, solid-solutioned(T4) and peak-aged(T6) alloys. The results showed that the tensile mechanical properties of the T6 alloy were always highest from room temperature to 300 ℃, in spite of an abnormal strength increase with temperature existed in the T4 alloy. For tensile creep properties, the T6 alloy exhibited the lowest steady creep rate below 235 ℃ while the T4 alloy possessed the best properties above 260 ℃. Microstructure characterization revealed that the transition was caused by the stress-promoted precipitation of β phase in the T4 alloy and rapid phase transformation in the T6 alloy at high temperatures. At 260 ℃, the calculated stress exponent n was 3.1 and 2.8 for the T4 and T6 alloys, respectively, suggesting the creep deformation mechanism was dislocation slip, which was further confirmed by the microstructure after creeping. Our findings can provide new insights into the heat treatment process of Mg-Gd alloys served at high temperatures.展开更多
Fe-Al-Ta eutectic composites with solidification rates of 6,20,30,80 and 200μm/s were obtained by a modified Bridgman directional solidification technique and alloying.Moreover,tensile property and fracture behavior ...Fe-Al-Ta eutectic composites with solidification rates of 6,20,30,80 and 200μm/s were obtained by a modified Bridgman directional solidification technique and alloying.Moreover,tensile property and fracture behavior of Fe-Al-Ta eutectic composites were studied at 600℃.The relationship between mechanical property and microstructure at high temperature was studied.Microstructure of Fe-Al-Ta eutectic is composed of Fe_(2)Ta(Al)Laves phase and Fe(Al,Ta)matrix phase.In addition,the tensile strength at high temperatures is higher than that at room temperature.The tensile strength is increased with the increase of solidification rate.Moreover,fracture morphology transforms from cleavage fracture to dimple fracture as the solidification rate is increased at high temperatures.展开更多
The Ti Bw reinforced near-α titanium matrix composite(Ti-5.8 Al-3.4 Zr-4.0 Sn-0.4 Mo-0.4 Nb-0.4 Si-0.06 C) was successfully synthesized by powder metallurgy and hot extrusion route. The effects of solution and agin...The Ti Bw reinforced near-α titanium matrix composite(Ti-5.8 Al-3.4 Zr-4.0 Sn-0.4 Mo-0.4 Nb-0.4 Si-0.06 C) was successfully synthesized by powder metallurgy and hot extrusion route. The effects of solution and aging temperature on the microstructure and high temperature tensile properties of the composite were investigated. The results revealed that the fine transformed β phase can be obtained by the solution treatment at β phase region and aging treatment, no other precipitates were observed. The α2 phase(Ti3 Al) can be acquired when the solution treated at α+β phase region followed by aging treatment. With increasing the aging temperature from 500 to 700℃ for 5 h, the size of α2 precipitates increases from about 5 to about 30 nm. The Ti Bw are stable without any interfacial reaction during the heat treatments. The high temperature tensile properties show that the composite performed by solution and aging treatment exhibits good strengthening effects. With increasing the aging temperature from 500 to 700℃, the strength of the composite increases at the expense of elongation due to the increment of α2 precipitates.The strength of the composite at 600℃ increases by 17% to 986 MPa after 1000℃/2 h/AC and 700℃/5 h/AC heat treatment.展开更多
The aim of this work is firstly to optimize T6 heat-treatment of low-pressure sand-cast Mg-10Gd-3Y-0.5Zr alloy,and then systematically investigate the mechanical behavior of the T6-treated alloy from room temperature ...The aim of this work is firstly to optimize T6 heat-treatment of low-pressure sand-cast Mg-10Gd-3Y-0.5Zr alloy,and then systematically investigate the mechanical behavior of the T6-treated alloy from room temperature to 300℃.It turned out that the optimum T6 heat-treatments for the tested alloy are 525℃×12 h+225℃×14 h and 525℃×12 h+250℃×12 h which integrated age-hardening and tensile properties into account,respectively.The strength of the T6-treated alloy indicates obvious anomalous temperature dependence from room temperature to 300℃,namely both ultimate tensile strength and yield strength of the tested alloy firstly increase with tensile temperature,and then decrease as temperature increases further.Elongation increased with temperature monotonously.The tensile fracture mode of the tested alloy changes from transgranular fracture to intergranular fracture with the increasing of test temperature.展开更多
Trace rare earth elements were used in order to strengthen the Sn60 Pb40 solder alloy. The experimental results show that the high temperature tensile strength of near eutectic Sn60 Pb40 solder alloy is increased b...Trace rare earth elements were used in order to strengthen the Sn60 Pb40 solder alloy. The experimental results show that the high temperature tensile strength of near eutectic Sn60 Pb40 solder alloy is increased by about 70% after adding trace rare earth elements. Analysis shows that the high affinity between rare earth element and Sn leads to the variation of contact angle at the three phase junction of S/L interface during eutectic growth and further changes the Pb concentration at the S/L interface needed for coupled eutectic growth. Thus the eutectic microstructure can directly grow upon the primary Pb rich phase and the formation of coarse Sn rich halo is suppressed. Therefore homogeneous metallurgical microstructure can be obtained.展开更多
Diesel engines, characterized by higher breakout pressure and compression ratio in comparison with gasoline engines, require particularly elevated tensile properties for their engine parts. In order to maintain both h...Diesel engines, characterized by higher breakout pressure and compression ratio in comparison with gasoline engines, require particularly elevated tensile properties for their engine parts. In order to maintain both high strength and high ductility in the cylinder head, i.e., to obtain higher percent elongation without further reducing the tensile strength, Al Si9Cu1 alloy was used to prepare the cylinder head in an aluminum diesel engine. At the same time, the effect of different modification elements, Na or Sr, and Fe content on the reduction of secondary dendrite arm spacing(SDAS) was discussed, and the design of T7 heat treatment parameters were analyzed in order to improve the tensile ductility. The result shows:(1) The SDAS is as small as 18±3 μm for the Sr modified alloy.(2) The percent elongation of the alloy with Sr modification increases by 66.7% and 42.9%, respectively, compared with the unmodified alloy and the alloy with Na modification.(3) Lower Fe content alloy(0.10%) gives good results in percent elongation compared to the alloy with higher Fe content(0.27%); in particular, after Sr modification and T7 heat treatment, the elongation of over 5% is obtained.展开更多
In this study,the microstructure and tensile properties of selective laser melted AlSilOMg at elevated temperature were investigated with focus on the interfacial region.In-situ SEM and in-situ EBSD analysis were prop...In this study,the microstructure and tensile properties of selective laser melted AlSilOMg at elevated temperature were investigated with focus on the interfacial region.In-situ SEM and in-situ EBSD analysis were proposed to characterize the microstructural evolution with temperature.The as-fabricated AlSilOMg sample presents high tensile strength with the ultimate tensile strength(UTS)of~450 MPa and yield strength(YS)of~300 MPa,which results from the mixed strengthening mechanism among grain boundary,solid solution,dislocation and Orowan looping mechanism.When holding at the temperature below 200℃for 30 min,the micro structure presents little change,and only a slight decrement of yield strength appears due to the relief of the residual stress.However,when the holding temperature further increases to 300℃and 400℃,the coarsening and precipitation of Si particles inα-Al matrix occur obviously,which leads to an obvious decrease of solid solution strength.At the same time,matrix softening and the weakness of dislocation strengthening also play important roles.When the holding temperature reaches to 400℃,the yield strength decreases significantly to about 25 MPa which is very similar to the as-cast Al alloy.This might be concluded that the YS is dominated by the matrix materials.Because the softening mechanism counteracts work hardening,the extremely high elongation occurs.展开更多
Further improvement on high temperature durability is one of the most important aims except for high specific strength, high specific stiffness, and excellent wear resistance, to design and fabricate discontinuously r...Further improvement on high temperature durability is one of the most important aims except for high specific strength, high specific stiffness, and excellent wear resistance, to design and fabricate discontinuously reinforced titanium matrix composites (DRTMCs). Their superior properties render them extensive application potential in aerospace and military industries due to the urgent demand for the materials with characteristics of lightweight, high strength, high stiffness and high temperature durability. With development on fabrication methods and room temperature properties, testing, characterizing, evaluating and further increasing high temperature properties of DRTMCs are becoming more and more important to promote their applications. This review provides insights and comprehensions on the high temperature tensile properties, superplastic tensile properties, creep behaviors, and high temperature oxidation behaviors of DRTMCs,展开更多
Wire+arc additive manufacturing(WAAM)is considered an innovative technology that can change the manufacturing landscape in the near future.WAAM offers the benefits of inexpensive initial system setup and a high deposi...Wire+arc additive manufacturing(WAAM)is considered an innovative technology that can change the manufacturing landscape in the near future.WAAM offers the benefits of inexpensive initial system setup and a high deposition rate for fabricating medium-and large-sized parts such as die-casting tools.In this study,AISI H13 tool steel,a popular die-casting tool metal,is manufactured by cold metal transfer(CMT)-based WAAM and is then comprehensively analyzed for its microstructural and mechanical properties.Location-dependent phase combinations are observed,which could be explained by nonequilibrium thermal cycles that resulted from the layer-by-layer stacking mechanism used in WAAM.In addition,remelting and reheating of the layers reduces welding anomalies(e.g.,pores and voids).The metallurgical characteristics of the H13 strongly correlate with the mechanical properties.The combinations of phases at different locations of the additively manufactured part exhibit a periodic microhardness profile.Martensite,Retained Austenite,Ferrite,and Carbide phases are found in combination at different locations of the part based on the part’s temperature distribution during additive deposition.Moreover,the tensile properties at elevated temperatures(23℃,300℃,and 600℃)are comparable to those from other WAAM and additive manufacturing(AM)processes.The X-ray diffraction results verify that the microstructural stability of the fabricated parts at high temperatures would allow them to be used in high temperatures.展开更多
Silicon carbide (SiC) fiber has recently received considerable attention as promising next-generation fiber because of its high strength at temperatures greater than 1300 ℃ in air.High-quality SiC fiber is primarily ...Silicon carbide (SiC) fiber has recently received considerable attention as promising next-generation fiber because of its high strength at temperatures greater than 1300 ℃ in air.High-quality SiC fiber is primarily made through a curing and heat treatment process.In this study,the chemical vapor curing method,instead of the thermal oxidation curing method,was used to prepare cured polycarbosilane (PCS) fiber.During the high temperature heat treatment of the cured PCS fiber,varied heating rates of 10,20,30,and 40 ℃/min were applied.Throughout the process,the fiber remained in the amorphous silicon carbide phase,and the measured tensile strength was the greatest when the oxygen content in the heat-treated fiber was low,due to the rapid heating rate.The fiber produced through this method was also found to have excellent internal oxidation properties.This fast,continuous process shows a great promise for the production of SiC fiber and the development of high-quality products.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 51771152)the National Key Research and Development Program of China (Grant No. 2018YFB1106800)。
文摘Due to the effective precipitation strengthening effect of the β phase, Mg-Gd alloys exhibit excellent room temperature mechanical behaviors. However, when served at high temperatures, the metastable β phase will transform to other phases, resulting in severe performance degradation. In this study, we investigated the effect of precipitation state achieved by different heat treatments on high temperature tensile and creep behaviors of the Mg-15Gd alloy by comparing the properties of the as-cast, solid-solutioned(T4) and peak-aged(T6) alloys. The results showed that the tensile mechanical properties of the T6 alloy were always highest from room temperature to 300 ℃, in spite of an abnormal strength increase with temperature existed in the T4 alloy. For tensile creep properties, the T6 alloy exhibited the lowest steady creep rate below 235 ℃ while the T4 alloy possessed the best properties above 260 ℃. Microstructure characterization revealed that the transition was caused by the stress-promoted precipitation of β phase in the T4 alloy and rapid phase transformation in the T6 alloy at high temperatures. At 260 ℃, the calculated stress exponent n was 3.1 and 2.8 for the T4 and T6 alloys, respectively, suggesting the creep deformation mechanism was dislocation slip, which was further confirmed by the microstructure after creeping. Our findings can provide new insights into the heat treatment process of Mg-Gd alloys served at high temperatures.
基金Funded by National Natural Science Foundation of China(No.51201121)Key Industry Innovation Chain(group)Project of Shaanxi Province(No.2019ZDLGY 04-04)+1 种基金International Cooperation Project of Key R&D Program in Shaanxi Province(No.2020KW-033)Industrialization Project of Shaanxi Provincial Department of Education(No.20JC024)
文摘Fe-Al-Ta eutectic composites with solidification rates of 6,20,30,80 and 200μm/s were obtained by a modified Bridgman directional solidification technique and alloying.Moreover,tensile property and fracture behavior of Fe-Al-Ta eutectic composites were studied at 600℃.The relationship between mechanical property and microstructure at high temperature was studied.Microstructure of Fe-Al-Ta eutectic is composed of Fe_(2)Ta(Al)Laves phase and Fe(Al,Ta)matrix phase.In addition,the tensile strength at high temperatures is higher than that at room temperature.The tensile strength is increased with the increase of solidification rate.Moreover,fracture morphology transforms from cleavage fracture to dimple fracture as the solidification rate is increased at high temperatures.
基金supported by the National Natural Science Foundation of China(Grant Nos.51701114,11604204,51471063,51271111)the Youth Teacher Development Program of Shanghai Universities(Grant No.ZZGCD15101)+1 种基金Scientific Research Project of Shanghai University of Engineering ScienceTalents Project of Shanghai University of Engineering Science
文摘The Ti Bw reinforced near-α titanium matrix composite(Ti-5.8 Al-3.4 Zr-4.0 Sn-0.4 Mo-0.4 Nb-0.4 Si-0.06 C) was successfully synthesized by powder metallurgy and hot extrusion route. The effects of solution and aging temperature on the microstructure and high temperature tensile properties of the composite were investigated. The results revealed that the fine transformed β phase can be obtained by the solution treatment at β phase region and aging treatment, no other precipitates were observed. The α2 phase(Ti3 Al) can be acquired when the solution treated at α+β phase region followed by aging treatment. With increasing the aging temperature from 500 to 700℃ for 5 h, the size of α2 precipitates increases from about 5 to about 30 nm. The Ti Bw are stable without any interfacial reaction during the heat treatments. The high temperature tensile properties show that the composite performed by solution and aging treatment exhibits good strengthening effects. With increasing the aging temperature from 500 to 700℃, the strength of the composite increases at the expense of elongation due to the increment of α2 precipitates.The strength of the composite at 600℃ increases by 17% to 986 MPa after 1000℃/2 h/AC and 700℃/5 h/AC heat treatment.
基金This work is supported by National Natural Science Foundation of China(Nos.51771115 and 51775334)National Science and Technology Major Project(2017ZX04006001)+1 种基金Joint Fund for Space Science and Technology(6141B06300401 and 6141B06310106)Science Innovation Foundation of Shanghai Academy of Spaceflight Technology(No.SAST2016048).
文摘The aim of this work is firstly to optimize T6 heat-treatment of low-pressure sand-cast Mg-10Gd-3Y-0.5Zr alloy,and then systematically investigate the mechanical behavior of the T6-treated alloy from room temperature to 300℃.It turned out that the optimum T6 heat-treatments for the tested alloy are 525℃×12 h+225℃×14 h and 525℃×12 h+250℃×12 h which integrated age-hardening and tensile properties into account,respectively.The strength of the T6-treated alloy indicates obvious anomalous temperature dependence from room temperature to 300℃,namely both ultimate tensile strength and yield strength of the tested alloy firstly increase with tensile temperature,and then decrease as temperature increases further.Elongation increased with temperature monotonously.The tensile fracture mode of the tested alloy changes from transgranular fracture to intergranular fracture with the increasing of test temperature.
文摘Trace rare earth elements were used in order to strengthen the Sn60 Pb40 solder alloy. The experimental results show that the high temperature tensile strength of near eutectic Sn60 Pb40 solder alloy is increased by about 70% after adding trace rare earth elements. Analysis shows that the high affinity between rare earth element and Sn leads to the variation of contact angle at the three phase junction of S/L interface during eutectic growth and further changes the Pb concentration at the S/L interface needed for coupled eutectic growth. Thus the eutectic microstructure can directly grow upon the primary Pb rich phase and the formation of coarse Sn rich halo is suppressed. Therefore homogeneous metallurgical microstructure can be obtained.
基金supported by the major project of Shandong Science and Technology(No.2015ZDZX03004)the project of Shandong Science and Technology Development Plan(No.2014GGX103035)the National“Thousand Talents Plan”of China
文摘Diesel engines, characterized by higher breakout pressure and compression ratio in comparison with gasoline engines, require particularly elevated tensile properties for their engine parts. In order to maintain both high strength and high ductility in the cylinder head, i.e., to obtain higher percent elongation without further reducing the tensile strength, Al Si9Cu1 alloy was used to prepare the cylinder head in an aluminum diesel engine. At the same time, the effect of different modification elements, Na or Sr, and Fe content on the reduction of secondary dendrite arm spacing(SDAS) was discussed, and the design of T7 heat treatment parameters were analyzed in order to improve the tensile ductility. The result shows:(1) The SDAS is as small as 18±3 μm for the Sr modified alloy.(2) The percent elongation of the alloy with Sr modification increases by 66.7% and 42.9%, respectively, compared with the unmodified alloy and the alloy with Na modification.(3) Lower Fe content alloy(0.10%) gives good results in percent elongation compared to the alloy with higher Fe content(0.27%); in particular, after Sr modification and T7 heat treatment, the elongation of over 5% is obtained.
基金supported financially by the National Key Research and Development Programme of China(Nos.2016YFB1100602 and 2016YFB1100100)。
文摘In this study,the microstructure and tensile properties of selective laser melted AlSilOMg at elevated temperature were investigated with focus on the interfacial region.In-situ SEM and in-situ EBSD analysis were proposed to characterize the microstructural evolution with temperature.The as-fabricated AlSilOMg sample presents high tensile strength with the ultimate tensile strength(UTS)of~450 MPa and yield strength(YS)of~300 MPa,which results from the mixed strengthening mechanism among grain boundary,solid solution,dislocation and Orowan looping mechanism.When holding at the temperature below 200℃for 30 min,the micro structure presents little change,and only a slight decrement of yield strength appears due to the relief of the residual stress.However,when the holding temperature further increases to 300℃and 400℃,the coarsening and precipitation of Si particles inα-Al matrix occur obviously,which leads to an obvious decrease of solid solution strength.At the same time,matrix softening and the weakness of dislocation strengthening also play important roles.When the holding temperature reaches to 400℃,the yield strength decreases significantly to about 25 MPa which is very similar to the as-cast Al alloy.This might be concluded that the YS is dominated by the matrix materials.Because the softening mechanism counteracts work hardening,the extremely high elongation occurs.
基金financially supported by the National Natural Science Foundation of China (Nos.51101042,51271064 and 51471063)the High Technology Research and Development Program of China (No.2013AA031202)the Fundamental Research Funds for the Central Universities (No.HIT.BRETIII.201401)
文摘Further improvement on high temperature durability is one of the most important aims except for high specific strength, high specific stiffness, and excellent wear resistance, to design and fabricate discontinuously reinforced titanium matrix composites (DRTMCs). Their superior properties render them extensive application potential in aerospace and military industries due to the urgent demand for the materials with characteristics of lightweight, high strength, high stiffness and high temperature durability. With development on fabrication methods and room temperature properties, testing, characterizing, evaluating and further increasing high temperature properties of DRTMCs are becoming more and more important to promote their applications. This review provides insights and comprehensions on the high temperature tensile properties, superplastic tensile properties, creep behaviors, and high temperature oxidation behaviors of DRTMCs,
基金support of the Korea Institute of Industrial Technology as a project on the development of metal 3D printing materials and process optimization technology for medium-and large-sized transportation part mold manufacturing(KITECH JE200008)。
文摘Wire+arc additive manufacturing(WAAM)is considered an innovative technology that can change the manufacturing landscape in the near future.WAAM offers the benefits of inexpensive initial system setup and a high deposition rate for fabricating medium-and large-sized parts such as die-casting tools.In this study,AISI H13 tool steel,a popular die-casting tool metal,is manufactured by cold metal transfer(CMT)-based WAAM and is then comprehensively analyzed for its microstructural and mechanical properties.Location-dependent phase combinations are observed,which could be explained by nonequilibrium thermal cycles that resulted from the layer-by-layer stacking mechanism used in WAAM.In addition,remelting and reheating of the layers reduces welding anomalies(e.g.,pores and voids).The metallurgical characteristics of the H13 strongly correlate with the mechanical properties.The combinations of phases at different locations of the additively manufactured part exhibit a periodic microhardness profile.Martensite,Retained Austenite,Ferrite,and Carbide phases are found in combination at different locations of the part based on the part’s temperature distribution during additive deposition.Moreover,the tensile properties at elevated temperatures(23℃,300℃,and 600℃)are comparable to those from other WAAM and additive manufacturing(AM)processes.The X-ray diffraction results verify that the microstructural stability of the fabricated parts at high temperatures would allow them to be used in high temperatures.
文摘Silicon carbide (SiC) fiber has recently received considerable attention as promising next-generation fiber because of its high strength at temperatures greater than 1300 ℃ in air.High-quality SiC fiber is primarily made through a curing and heat treatment process.In this study,the chemical vapor curing method,instead of the thermal oxidation curing method,was used to prepare cured polycarbosilane (PCS) fiber.During the high temperature heat treatment of the cured PCS fiber,varied heating rates of 10,20,30,and 40 ℃/min were applied.Throughout the process,the fiber remained in the amorphous silicon carbide phase,and the measured tensile strength was the greatest when the oxygen content in the heat-treated fiber was low,due to the rapid heating rate.The fiber produced through this method was also found to have excellent internal oxidation properties.This fast,continuous process shows a great promise for the production of SiC fiber and the development of high-quality products.