High tunnel production of horticultural food crops is becoming increasingly popular and has a significant impact on their growth, productivity and nutritional quality. The present study examines the effect of high tun...High tunnel production of horticultural food crops is becoming increasingly popular and has a significant impact on their growth, productivity and nutritional quality. The present study examines the effect of high tunnel production of lettuce (Lactuca sativa cv. “Two Star” and “New Red Fire”) and tomato (Solanum lycopersicum cv. “Celebrity” and “Mountain Fresh”) on their nutritional quality relating to major nutrients and health-promoting phytochemicals. High tunnel environment increased the concentration of N (protein) in both lettuce and tomato relative to the open field cultivation. The accumulation pattern of mineral nutrients in high tunnel was similar in green-leaf and red-leaf lettuce varieties. Lettuce varieties grown in high tunnel had higher accumulation of C, S and Zn relative to those grown in open field. However, high tunnel environment suppressed the accumulation of many micronutrients such as Mg, Fe, Cu and Mn in both lettuce varieties but not in tomato. For example, accumulation of Fe was reduced by more than 80% in “Two Star” and by more than 55% in “New Red Fire” under high tunnel. It also suppressed the levels of many health-promoting phenolic compounds such as chlorogenic acid, chicoric acid, rutin and kaempferol in green-leaf lettuce and gallic acid in red-leaf lettuce. High tunnel environment improved the soil nutrient status but reduced the radiation levels (PAR, UV-A and UV-B) received by the crops. The results show that the high tunnel production has a significant impact on the nutritional quality relating to protein and mineral nutrients in both crops and health-promoting phytochemicals in lettuce.展开更多
A dynamic model test(CL = 4) at different velocities of train,namely different loading frequencies,is carried out to study the dynamic characteristics of a high-speed railway tunnel invert and its foundation soils.Not...A dynamic model test(CL = 4) at different velocities of train,namely different loading frequencies,is carried out to study the dynamic characteristics of a high-speed railway tunnel invert and its foundation soils.Not only are the accelerations,dynamic coefficients,dynamic stresses of the invert and foundation soils emphatically analyzed,their relationship with the velocity of the train are discussed in detail.Through laboratory testing,the attenuation of vibration propagating from up the rails is obtained and the calculation formula of the speed influence coefficient of the tunnel invert is preliminarily established.The depth of the foundation soils influenced by vibration is also determined in this study.It is shown that the responses of the tunnel invert and foundation soils to vibration are slightly increased with the velocity of the train;circumferential stresses in the bottom of the invert are tensile stresses and maximum stresses appear under the foot of the rails;the dynamic soil pressures of the foundation decrease quickly with the distance away from the tunnel invert and an exponential relationship exists between them.展开更多
Seepage and stress redistribution are the main factors affecting the stability of surrounding rock in high-pressure hydraulic tunnels.In this work,the effects of the seepage field were firstly simplified as a seepage ...Seepage and stress redistribution are the main factors affecting the stability of surrounding rock in high-pressure hydraulic tunnels.In this work,the effects of the seepage field were firstly simplified as a seepage factor acting on the stress field,and the equilibrium equation of high pressure inner water exosmosis was established based on physical theory.Then,the plane strain theory was used to solve the problem of elasticity,and the analytic expression of surrounding rock stress was obtained.On the basis of criterion of Norway,the influences of seepage,pore water pressure and buried depth on the characteristics of the stress distribution of surrounding rocks were studied.The analyses show that the first water-filling plays a decisive role in the stability of the surrounding rock; the influence of seepage on the stress field around the tunnel is the greatest,and the change of the seepage factor is approximately consistent with the logarithm divergence.With the effects of the rock pore water pressure,the circumferential stress shows the exchange between large and small,but the radial stress does not.Increasing the buried depth can enhance the arching effect of the surrounding rock,thus improving the stability.展开更多
Based on the construction of high risk tunnels in Guiguang-Guangzhou high-speed railway, several new technologies were developed for high-risk tunnel con- struction. First, an integrated advanced geological predic- ti...Based on the construction of high risk tunnels in Guiguang-Guangzhou high-speed railway, several new technologies were developed for high-risk tunnel con- struction. First, an integrated advanced geological predic- tion was developed for tunneling in karst area. Then, a new system of ventilation by involving the dedusting technol- ogy was proposed and used in the field, which received a good air quality. Finally, a method to minimize the dis- tance between the working face and the invert installation was proposed by optimizing the invert installation and adopting the micro bench method. Applying the method to the project obtained an excellent result. The achievement obtained for this study would be able to provide a valuable reference to similar projects in the future.展开更多
Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze ...Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze the stratum settlement characteristics of high-speed railway at different crossing angles intersected by metro tunnel, in terms of ground settlement trough, stratum slip line and irregularity of ballastless tracks. According to the evolution of the stratum settlement at different angle regions, an optimized angle is proposed for the actual project design. In order to reduce the influence of stratum settlement on the safety of high-speed railway, an approach of safety assessment is proposed for the shield engineering undercutting high-speed railway, as per Chinese specifications using numerical results and on-site conditions. A case study is conducted for the shield tunnel section crossing the Wuhan-Guangzhou High-speed Railway between the Guangzhou North Railway Station and the Huacheng Road Station, which represents the first metro tunnel project passing below a high-speed railway in China. A series of measures is taken to ensure the safe excavation of the shield tunnel and the operation of the high-speed railway. The results can provide a technical support for performing a safety evaluation between high-speed railways and metro tunnels.展开更多
Using three-dimensional, unsteady N-S equations and k-ε turbulence model, the effect of ambient wind on the pressure wave generated by a high-speed train entering a tunnel was studied via numerical simulation. Pressu...Using three-dimensional, unsteady N-S equations and k-ε turbulence model, the effect of ambient wind on the pressure wave generated by a high-speed train entering a tunnel was studied via numerical simulation. Pressure changes of the train surface and tunnel wall were obtained as well as the flow field around the train. Results show that when the train runs downwind, the pressure change is smaller than that generated when there is no wind. When the train runs upwind, the pressure change is larger. The pressure change is more sensitive in the upwind condition than in the downwind condition. Compared with no wind condition, when the wind velocity is 10 m/s and 30 m/s, the pressure amplitude on the train head is reduced by 2.8% and 10.5%, respectively. The wall pressure amplitude at 400 m away from the tunnel entrance is reduced by 2.4% and 13.5%, respectively. When the wind velocity is-10 m/s and-30 m/s, the pressure amplitude on the train head increases by 3.0% and 17.7%, respectively. The wall pressure amplitude at 400 m away from the tunnel entrance increases by 3.6% and 18.6%, respectively. The pressure waveform slightly changes under ambient wind due to the influence of ambient wind on the pressure wave propagation speed.展开更多
Jinping traffic tunnel is one of the deepest traffic tunnels in the world with a maximum overburden of 2 375 m and the overburden over 73% of its total length is larger than 1 500 m. The tunnel is 17.5 km long and des...Jinping traffic tunnel is one of the deepest traffic tunnels in the world with a maximum overburden of 2 375 m and the overburden over 73% of its total length is larger than 1 500 m. The tunnel is 17.5 km long and designed to provide a shortcut road between two hydropower stations: Jinping I and Jinping II of the Jinping Hydropower Project, located on Yalong River, Liangshan State, Sichuan Province, China. The tunnel is so deep that building any shafts is impossible. The construction starts from both ends (east and west ends), and the construction length from the west end is 10 km with a blind heading. This paper deals with an overview of this project and analysis of the engineering features, as well as key technologies developed and applied during the construction, including geological prediction, rock burst prevention under a super high in-situ stress, sealing of groundwater with a high pressure and big flow rate, ventilation for a blind heading of 10 km, wet spraying of shotcrete at zones of rock burst and rich water, etc. The application of the new technologies to the construction achieved a high quality tunnel within the contract period.展开更多
Based on the TK7 high-temperature tunnel kiln computer control system, this article describes the control line system, the automatic loop control which has been realized in firing zone temperature, inner and bottom pr...Based on the TK7 high-temperature tunnel kiln computer control system, this article describes the control line system, the automatic loop control which has been realized in firing zone temperature, inner and bottom pressure and flow, and logic control of kiln doors and pusher, etc. In addition, this system integrates the product information management system of magnesite brick and efficiently ensures the important process parameters. During three months performance of the control system, all parameters and energy consumption have turned out a good result.展开更多
This paper reports that the structures of AlGaAs/InGaAs high electron mobility transistor (HEMT) and AlAs/GaAs resonant tunnelling diode (RTD) are epitaxially grown by molecular beam epitaxy (MBE) in turn on a G...This paper reports that the structures of AlGaAs/InGaAs high electron mobility transistor (HEMT) and AlAs/GaAs resonant tunnelling diode (RTD) are epitaxially grown by molecular beam epitaxy (MBE) in turn on a GaAs substrate. An Alo.24Gao.76As chair barrier layer, which is grown adjacent to the top AlAs barrier, helps to reduce the valley current of RTD. The peak-to-valley current ratio of fabricated RTD is 4.8 and the transconductance for the 1-μm gate HEMT is 125mS/mm. A static inverter which consists of two RTDs and a HEMT is designed and fabricated. Unlike a conventional CMOS inverter, the novel inverter exhibits self-latching property.展开更多
文摘High tunnel production of horticultural food crops is becoming increasingly popular and has a significant impact on their growth, productivity and nutritional quality. The present study examines the effect of high tunnel production of lettuce (Lactuca sativa cv. “Two Star” and “New Red Fire”) and tomato (Solanum lycopersicum cv. “Celebrity” and “Mountain Fresh”) on their nutritional quality relating to major nutrients and health-promoting phytochemicals. High tunnel environment increased the concentration of N (protein) in both lettuce and tomato relative to the open field cultivation. The accumulation pattern of mineral nutrients in high tunnel was similar in green-leaf and red-leaf lettuce varieties. Lettuce varieties grown in high tunnel had higher accumulation of C, S and Zn relative to those grown in open field. However, high tunnel environment suppressed the accumulation of many micronutrients such as Mg, Fe, Cu and Mn in both lettuce varieties but not in tomato. For example, accumulation of Fe was reduced by more than 80% in “Two Star” and by more than 55% in “New Red Fire” under high tunnel. It also suppressed the levels of many health-promoting phenolic compounds such as chlorogenic acid, chicoric acid, rutin and kaempferol in green-leaf lettuce and gallic acid in red-leaf lettuce. High tunnel environment improved the soil nutrient status but reduced the radiation levels (PAR, UV-A and UV-B) received by the crops. The results show that the high tunnel production has a significant impact on the nutritional quality relating to protein and mineral nutrients in both crops and health-promoting phytochemicals in lettuce.
基金the National Program on Key Basic Research Project of China(973 Program)under Grant No.2011CB013802the National Basic Research Program of China under Grant No.51108461 and No.51308270
文摘A dynamic model test(CL = 4) at different velocities of train,namely different loading frequencies,is carried out to study the dynamic characteristics of a high-speed railway tunnel invert and its foundation soils.Not only are the accelerations,dynamic coefficients,dynamic stresses of the invert and foundation soils emphatically analyzed,their relationship with the velocity of the train are discussed in detail.Through laboratory testing,the attenuation of vibration propagating from up the rails is obtained and the calculation formula of the speed influence coefficient of the tunnel invert is preliminarily established.The depth of the foundation soils influenced by vibration is also determined in this study.It is shown that the responses of the tunnel invert and foundation soils to vibration are slightly increased with the velocity of the train;circumferential stresses in the bottom of the invert are tensile stresses and maximum stresses appear under the foot of the rails;the dynamic soil pressures of the foundation decrease quickly with the distance away from the tunnel invert and an exponential relationship exists between them.
基金Projects(51374112/E0409,51109084/E090701) supported by the National Natural Science Foundation of ChinaProject(ZQN-PY112) supported by the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University,China+1 种基金Project(SKLGP2013K014) supported by the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology),ChinaProject(SKLGDUEK1304) supported by the Open Research Fund of State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology,China
文摘Seepage and stress redistribution are the main factors affecting the stability of surrounding rock in high-pressure hydraulic tunnels.In this work,the effects of the seepage field were firstly simplified as a seepage factor acting on the stress field,and the equilibrium equation of high pressure inner water exosmosis was established based on physical theory.Then,the plane strain theory was used to solve the problem of elasticity,and the analytic expression of surrounding rock stress was obtained.On the basis of criterion of Norway,the influences of seepage,pore water pressure and buried depth on the characteristics of the stress distribution of surrounding rocks were studied.The analyses show that the first water-filling plays a decisive role in the stability of the surrounding rock; the influence of seepage on the stress field around the tunnel is the greatest,and the change of the seepage factor is approximately consistent with the logarithm divergence.With the effects of the rock pore water pressure,the circumferential stress shows the exchange between large and small,but the radial stress does not.Increasing the buried depth can enhance the arching effect of the surrounding rock,thus improving the stability.
文摘Based on the construction of high risk tunnels in Guiguang-Guangzhou high-speed railway, several new technologies were developed for high-risk tunnel con- struction. First, an integrated advanced geological predic- tion was developed for tunneling in karst area. Then, a new system of ventilation by involving the dedusting technol- ogy was proposed and used in the field, which received a good air quality. Finally, a method to minimize the dis- tance between the working face and the invert installation was proposed by optimizing the invert installation and adopting the micro bench method. Applying the method to the project obtained an excellent result. The achievement obtained for this study would be able to provide a valuable reference to similar projects in the future.
基金the National Natural Science Foundation of China(Grant Nos. 51278423 and 51478395)for its financial support
文摘Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze the stratum settlement characteristics of high-speed railway at different crossing angles intersected by metro tunnel, in terms of ground settlement trough, stratum slip line and irregularity of ballastless tracks. According to the evolution of the stratum settlement at different angle regions, an optimized angle is proposed for the actual project design. In order to reduce the influence of stratum settlement on the safety of high-speed railway, an approach of safety assessment is proposed for the shield engineering undercutting high-speed railway, as per Chinese specifications using numerical results and on-site conditions. A case study is conducted for the shield tunnel section crossing the Wuhan-Guangzhou High-speed Railway between the Guangzhou North Railway Station and the Huacheng Road Station, which represents the first metro tunnel project passing below a high-speed railway in China. A series of measures is taken to ensure the safe excavation of the shield tunnel and the operation of the high-speed railway. The results can provide a technical support for performing a safety evaluation between high-speed railways and metro tunnels.
基金Projects(U1134203,51575538)supported by the National Natural Science Foundation of ChinaProject(2014T001-A)supported by the Technological Research and Development Program of China Railways CorporationProject(2015ZZTS210)supported by the Fundamental Research Funds for the Central South Universities of China
文摘Using three-dimensional, unsteady N-S equations and k-ε turbulence model, the effect of ambient wind on the pressure wave generated by a high-speed train entering a tunnel was studied via numerical simulation. Pressure changes of the train surface and tunnel wall were obtained as well as the flow field around the train. Results show that when the train runs downwind, the pressure change is smaller than that generated when there is no wind. When the train runs upwind, the pressure change is larger. The pressure change is more sensitive in the upwind condition than in the downwind condition. Compared with no wind condition, when the wind velocity is 10 m/s and 30 m/s, the pressure amplitude on the train head is reduced by 2.8% and 10.5%, respectively. The wall pressure amplitude at 400 m away from the tunnel entrance is reduced by 2.4% and 13.5%, respectively. When the wind velocity is-10 m/s and-30 m/s, the pressure amplitude on the train head increases by 3.0% and 17.7%, respectively. The wall pressure amplitude at 400 m away from the tunnel entrance increases by 3.6% and 18.6%, respectively. The pressure waveform slightly changes under ambient wind due to the influence of ambient wind on the pressure wave propagation speed.
文摘Jinping traffic tunnel is one of the deepest traffic tunnels in the world with a maximum overburden of 2 375 m and the overburden over 73% of its total length is larger than 1 500 m. The tunnel is 17.5 km long and designed to provide a shortcut road between two hydropower stations: Jinping I and Jinping II of the Jinping Hydropower Project, located on Yalong River, Liangshan State, Sichuan Province, China. The tunnel is so deep that building any shafts is impossible. The construction starts from both ends (east and west ends), and the construction length from the west end is 10 km with a blind heading. This paper deals with an overview of this project and analysis of the engineering features, as well as key technologies developed and applied during the construction, including geological prediction, rock burst prevention under a super high in-situ stress, sealing of groundwater with a high pressure and big flow rate, ventilation for a blind heading of 10 km, wet spraying of shotcrete at zones of rock burst and rich water, etc. The application of the new technologies to the construction achieved a high quality tunnel within the contract period.
文摘Based on the TK7 high-temperature tunnel kiln computer control system, this article describes the control line system, the automatic loop control which has been realized in firing zone temperature, inner and bottom pressure and flow, and logic control of kiln doors and pusher, etc. In addition, this system integrates the product information management system of magnesite brick and efficiently ensures the important process parameters. During three months performance of the control system, all parameters and energy consumption have turned out a good result.
文摘This paper reports that the structures of AlGaAs/InGaAs high electron mobility transistor (HEMT) and AlAs/GaAs resonant tunnelling diode (RTD) are epitaxially grown by molecular beam epitaxy (MBE) in turn on a GaAs substrate. An Alo.24Gao.76As chair barrier layer, which is grown adjacent to the top AlAs barrier, helps to reduce the valley current of RTD. The peak-to-valley current ratio of fabricated RTD is 4.8 and the transconductance for the 1-μm gate HEMT is 125mS/mm. A static inverter which consists of two RTDs and a HEMT is designed and fabricated. Unlike a conventional CMOS inverter, the novel inverter exhibits self-latching property.