The reaction behaviours of A1203 and SiO2 in high alumina coal fly ash under various alkali hydrothermal conditions were studied. The means of XRD, XRF, FTIR and SEM were used to measure the mineral phase and morpholo...The reaction behaviours of A1203 and SiO2 in high alumina coal fly ash under various alkali hydrothermal conditions were studied. The means of XRD, XRF, FTIR and SEM were used to measure the mineral phase and morphology of the solid samples obtained by different alkali hydrothermal treatments as well as the leaching ratio of SiO2 to A1203 in alkali solution. The results showed that with the increase of the hydrothermal treating temperature from 75 to 160 ~C, phillipsite-Na, zeolite A, zeolite P, and hydroxysodalite were produced sequentially while the mullite and corundum phase still remained. Zeolite P was massively formed at low-alkali concentration and the hydroxysodalite was predominantly obtained at high-alkali concentration. By the dissolution of aluminosilicate glass and the formation of zeolites together, the leaching efficiency of SiO2 can reach 42.13% with the mass ratio of A1203/SIO2 up to 2.19:1.展开更多
In this paper, an experimental study was conducted in order to test the feasibility of sintering mullite directly from the high-alumina fly ash, without adding any extra material. The results show that the mullite con...In this paper, an experimental study was conducted in order to test the feasibility of sintering mullite directly from the high-alumina fly ash, without adding any extra material. The results show that the mullite contents in most sintered samples are over 70%. The samples sintered from the beneficiated fly ash have a higher content of mullite than those from the as-received fly ash under the same synthetic conditions. To obtain an equal amount of mullite, a higher sintering temperature is needed for the beneficiated fly ash than for the as-received fly ash. Considering the physical properties of sintered mullite, the favorable sintering temperature is 1400℃ for the as-received fly ash and 1500℃ for the beneficiated fly ash. A higher sintering temperature and a shorter holding time are profitable to sintering mullite. The orthogonal test confirmed that the dominant factor affecting mullite synthesis is sintering temperature, and that the most profitable matching conditions are 200 MPa-1500℃-3 h for the as-received fly ash and 200 MPa-1500 ℃-4 h for the beneficiated fly ash.展开更多
基金Project(2652014017) supported by the Fundamental Research Funds for the Central Universities,China
文摘The reaction behaviours of A1203 and SiO2 in high alumina coal fly ash under various alkali hydrothermal conditions were studied. The means of XRD, XRF, FTIR and SEM were used to measure the mineral phase and morphology of the solid samples obtained by different alkali hydrothermal treatments as well as the leaching ratio of SiO2 to A1203 in alkali solution. The results showed that with the increase of the hydrothermal treating temperature from 75 to 160 ~C, phillipsite-Na, zeolite A, zeolite P, and hydroxysodalite were produced sequentially while the mullite and corundum phase still remained. Zeolite P was massively formed at low-alkali concentration and the hydroxysodalite was predominantly obtained at high-alkali concentration. By the dissolution of aluminosilicate glass and the formation of zeolites together, the leaching efficiency of SiO2 can reach 42.13% with the mass ratio of A1203/SIO2 up to 2.19:1.
基金This work was financed by the National Natural Science Foundation of China (Grant No. 40672103 , 40575065) the Program for New Century Excellent Talents in University of the Chinese Ministry of Education. The authors sincerely thank Professor Li Kaiqi for his constructive suggestions and useful discussions.
文摘In this paper, an experimental study was conducted in order to test the feasibility of sintering mullite directly from the high-alumina fly ash, without adding any extra material. The results show that the mullite contents in most sintered samples are over 70%. The samples sintered from the beneficiated fly ash have a higher content of mullite than those from the as-received fly ash under the same synthetic conditions. To obtain an equal amount of mullite, a higher sintering temperature is needed for the beneficiated fly ash than for the as-received fly ash. Considering the physical properties of sintered mullite, the favorable sintering temperature is 1400℃ for the as-received fly ash and 1500℃ for the beneficiated fly ash. A higher sintering temperature and a shorter holding time are profitable to sintering mullite. The orthogonal test confirmed that the dominant factor affecting mullite synthesis is sintering temperature, and that the most profitable matching conditions are 200 MPa-1500℃-3 h for the as-received fly ash and 200 MPa-1500 ℃-4 h for the beneficiated fly ash.