This work investigates durability of cement-free mortars with a binder comprised of ground granulated blast furnace slag (GGBFS) activated by high-calcium fly ash (HCFA) and sodium carbonate (Na<sub>2</sub>...This work investigates durability of cement-free mortars with a binder comprised of ground granulated blast furnace slag (GGBFS) activated by high-calcium fly ash (HCFA) and sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>): the soundness, sulfate resistance, alkali-silica reactivity and efflorescence factors are considered. Results of tests show that such mortars are resistant to alkali-silica expansion. Mortars are also sulfate-resistant when the amount of HCFA in the complex binder is within a limit of 10 wt%. The fineness of fly ash determines its’ ability to activate GGBFS hydration, and influence soundness of the binder, early strength development, sulfate resistance and efflorescence behavior. The present article is a continuation of authors’ work, previously published in MSA, Vol. 14, 240-254.展开更多
High-calcium fly ash (HCFA)—a residue of high-temperature coal combustion at thermal power plants, in combination with sodium carbonate presents an effective hardening activator of ground granulated blast-furnace sla...High-calcium fly ash (HCFA)—a residue of high-temperature coal combustion at thermal power plants, in combination with sodium carbonate presents an effective hardening activator of ground granulated blast-furnace slag (GGBFS). Substitution of 10% - 30% of GGBFS by HCFA and premixing of 1% - 3% Na2CO3 to this dry binary binder was discovered to give mortar compression strength of 10 - 30 to 30 - 45 MPa at 7 and 28 days when moist cured at ambient temperature. High-calcium fly ash produced from low-temperature combustion of fuel, like in circulating fluidized bed technology, reacts with water readily and is itself a good hardening activator for GGBFS, so introduction of Na<sub>2</sub>CO<sub>3</sub> into such mix has no noticeable effect on the mortar strength. However, low-temperature HCFA has higher water demand, and the strength of mortar is compromised by this factor. As of today, our research is still ongoing, and we expect to publish more data on different aspects of durability of proposed GGBFS-HCFA binder later.展开更多
The problem of low disposal and utilization rate of bulk industrial solid waste needs to be solved.In this paper,a high-activity admixture composed of steel slag-phosphate slag-limestone powder was proposed for most o...The problem of low disposal and utilization rate of bulk industrial solid waste needs to be solved.In this paper,a high-activity admixture composed of steel slag-phosphate slag-limestone powder was proposed for most of the solid waste with low activity and a negative impact on concrete workability,combining the characteristics of each solid waste.The paper demonstrates the feasibility and explains the principle of the composite system in terms of water requirement of standard consistency,setting time,workability,and mechanical properties,combined with the composition of the phases,hydration temperature,and microscopic morphology.The results showed that the steel slag:phosphate slag:limestone=5:2:3 gave the highest activity of the composite system,over 92%.Besides,the composite system had no significant effect on water demand and setting time compared to cement,and it could significantly increase the 7 and 28 d activity of the system.The composite system delayed the exothermic hydration of the cement and reduced the exothermic heat but had no effect on the hydration products.Therefore,the research in this paper dramatically improved the solid waste dissipation in concrete,reduced the amount of cement in concrete and positively responded to the national slogan of carbon neutral and peaking.展开更多
Calcification roasting–acid leaching of high-chromium vanadium slag(HCVS)was conducted to elucidate the roasting and leaching behaviors of vanadium and chromium.The effects of the purity of Ca O,molar ratio between C...Calcification roasting–acid leaching of high-chromium vanadium slag(HCVS)was conducted to elucidate the roasting and leaching behaviors of vanadium and chromium.The effects of the purity of Ca O,molar ratio between Ca O and V_2O_5(n(Ca O)/n(V_2O_5)),roasting temperature,holding time,and the heating rate used in the oxidation–calcification processes were investigated.The roasting process and mechanism were analyzed by X-ray diffraction(XRD),scanning electron microscopy(SEM),and thermogravimetry–differential scanning calorimetry(TG–DSC).The results show that most of vanadium reacted with Ca O to generate calcium vanadates and transferred into the leaching liquid,whereas almost all of the chromium remained in the leaching residue in the form of(Fe_(0.6)Cr_(0.4))_2O_3.Variation trends of the vanadium and chromium leaching ratios were always opposite because of the competitive reactions of oxidation and calcification between vanadium and chromium with Ca O.Moreover,Ca O was more likely to combine with vanadium,as further confirmed by thermodynamic analysis.When the HCVS with Ca O added in an n(Ca O)/n(V_2O_5)ratio of 0.5 was roasted in an air atmosphere at a heating rate of 10°C/min from room temperature to 950°C and maintained at this temperature for 60 min,the leaching ratios of vanadium and chromium reached91.14%and 0.49%,respectively;thus,efficient extraction of vanadium from HCVS was achieved and the leaching residue could be used as a new raw material for the extraction of chromium.Furthermore,the oxidation and calcification reactions of the spinel phases occurred at 592and 630°C for n(Ca O)/n(V_2O_5)ratios of 0.5 and 5,respectively.展开更多
A study on the melting and viscosity properties of the chromium-containing high-titanium melting slag(CaO–SiO2–MgO–Al2O3–TiO2–Cr2O3) with TiO2 contents ranging from 38.63 wt% to 42.63 wt% was conducted. The melti...A study on the melting and viscosity properties of the chromium-containing high-titanium melting slag(CaO–SiO2–MgO–Al2O3–TiO2–Cr2O3) with TiO2 contents ranging from 38.63 wt% to 42.63 wt% was conducted. The melting properties were investigated with a meltingpoint apparatus, and viscosity was measured using the rotating cylinder method. The FactSage 7.1 software and X-ray diffraction, in combination with scanning electron microscopy–energy-dispersive spectroscopy(SEM–EDS), were used to characterize the phase equilibrium and microstructure of chromium-containing high-titanium melting slags. The results indicated that an increase in the TiO2 content led to a decrease in the viscosity of the chromium-containing high-titanium melting slag. In addition, the softening temperature, hemispheric temperature, and flowing temperature decreased with increasing TiO2 content. The amount of crystallized anosovite and sphene phases gradually increased with increasing TiO2 content, whereas the amount of perovskite phase decreased. SEM observations revealed that the distribution of the anosovite phase was dominantly influenced by TiO2.展开更多
Calcium carbide slag, generated in the hydrolysis process of calcium carbide, is an potential carbon capture reagent because its main ingredient is Ca(OH)_2. Calcium carbide slag, a by-product of a resin factory was u...Calcium carbide slag, generated in the hydrolysis process of calcium carbide, is an potential carbon capture reagent because its main ingredient is Ca(OH)_2. Calcium carbide slag, a by-product of a resin factory was used as carbon capture reagent. The change of p H and electrical conductivity(EC) of the calcium carbide slag slurry with different solid-to-liquid ratios, as well as the capture efficiency and dynamics under different temperatures and flow rates of CO_2 were studied. The properties of solid were characterized with XRD, TG-DTA, SEM and FT-IR before and after capturing carbon. The results show that the change of p H and EC were greater with low solid-to-liquid ratio than that with high solid-to-liquid ratio. The analysis of XRD and SEM show that the content of Ca CO_3 increased significantly, which improved that Ca(OH)_2 and free Ca O were reacted with CO_2. The results of TG-DTA and FT-IR show that the physicochemical properties and microstructure of the slag changed after capturing CO_2 because of the increase of Ca CO_3 content. All the results mentioned above improve the feasibility of utilizing calcium carbide slag to capture CO_2 and offer a practical way for carbon emission reduction and disposal of wasted calcium carbide slag.展开更多
High phosphorus steel slag and carbonized rice husk are two common wastes characterized by high generation and low secondary use values.Through the reduction of high phosphorus steel slag by biomass,both wastes were f...High phosphorus steel slag and carbonized rice husk are two common wastes characterized by high generation and low secondary use values.Through the reduction of high phosphorus steel slag by biomass,both wastes were fully utilized,thus reducing the negative impact on the environment.In this study,variables such as temperature,time,and amount of reactants were changed to determine the optimal conditions for the reaction of steel slag with carbonized rice husk at high temperatures.The actual amount of reducing agent consumed during the reduction was significantly greater than that predicted by theoretical calculations.Adding three carbon equivalent of carbonized rice husk and maintaining at 1500℃ for 30 min could remove 79.25% of P_(2)O_(5) in the slag.By modeling the material cycle in which high phosphorus steel slag was treated with biomass,the product could be used for crop growth.Meanwhile,the reduced iron and residual steel slag can be used tomake steel again,thereby leading to a sharp reduction in fossil fuel usage and greenhouse gas emissions in this process.展开更多
A new method (gas-based separation plus melt separation) has been proposed to remove phosphorus of the high phosphorus iron ore which was 1.25 % of phosphorus content and 50. 0% of iron content. HSC chemistry packag...A new method (gas-based separation plus melt separation) has been proposed to remove phosphorus of the high phosphorus iron ore which was 1.25 % of phosphorus content and 50. 0% of iron content. HSC chemistry package and the coexistence theory of slag structure were adopted for theoretical analysis. The gas-based reduction was carried out using a fixed bed reactor and the ore sample of 80 g with an average particle size of 2 mm were reduced using CO or H2 at temperature of 1 073 K for 5 hours. 50 g of the reduced sample with 3.0% CaO as additive was then subjected to melt separation in an electric furnace at temperature of 1 873 K under Ar atmosphere. In each run, SEM, EDS, optical microscopic examination and chemical analysis of the reduced ore sample, the metal sample and the slag sample were conducted. Results of all gas-based reduction experiments showed that iron metallization ratios were some 65% and the phosphorus compounds in the ore remained unchanged. It was agreed well with the simula- tions except for the iron metallization rate being less than predicted value; this difference was attributed to kinetics. Results of melt separation experiments showed that P content in metal samples is 0.33% (metal sample from H2 reduction product) and 0.27% (metal sample from CO reduction product). The phosphorus partition ratios of both cases were less than predicted values. Some P in the metal samples existed as slag inclusion was considered to be the reason for this discrepancy.展开更多
In order to clarify the slag system of high Cr2O3 vanadium-titanium magnetite smelting in BF (blast furnace), the melting properties of slag samples prepared by analytically pure reagents were measured. By means of ...In order to clarify the slag system of high Cr2O3 vanadium-titanium magnetite smelting in BF (blast furnace), the melting properties of slag samples prepared by analytically pure reagents were measured. By means of orthogonal test synthetic weighted score method, the optimal slag for high Cr2O3 vanadium-titanium magnetite was obtained, which contained 10% MgO, 8% TiO2 and 15% Al2O3, with the binary basicity being 1.15. In addition, the effects of basicity, MgO, TiO2 and A12 03 on slag melting properties were investigated by single factor test, and the results showed that, with increasing the basicity or TiO2 content, melting temperature (Tin) increased, whereas initial vis- cosity (r/0) and high temperature viscosity (r/h) decreased. With increasing the MgO content, Tm decreased firstly and then increased. With increasing the Al2 O3 content, Tm increased, and η0 and r/h decreased firstly and then increased.展开更多
Nozzle blockage is a common problem during continuous casting of Al-killed steel, and calcium treatment is widely used to resolve it. In consideration of the production costs, the technology of nonmetallic inclusion c...Nozzle blockage is a common problem during continuous casting of Al-killed steel, and calcium treatment is widely used to resolve it. In consideration of the production costs, the technology of nonmetallic inclusion control was studied to optimize the Ca consumption. The proposed process of slag washing was employed, and the refining slag composition, deoxidation conditions and alloying systems were optimized. Using these measures, the steel cleanliness before Ca addition was improved significantly, and the corresponding Ca consumption was reduced. More- over, the continuous casting could be conducted smoothly.展开更多
文摘This work investigates durability of cement-free mortars with a binder comprised of ground granulated blast furnace slag (GGBFS) activated by high-calcium fly ash (HCFA) and sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>): the soundness, sulfate resistance, alkali-silica reactivity and efflorescence factors are considered. Results of tests show that such mortars are resistant to alkali-silica expansion. Mortars are also sulfate-resistant when the amount of HCFA in the complex binder is within a limit of 10 wt%. The fineness of fly ash determines its’ ability to activate GGBFS hydration, and influence soundness of the binder, early strength development, sulfate resistance and efflorescence behavior. The present article is a continuation of authors’ work, previously published in MSA, Vol. 14, 240-254.
文摘High-calcium fly ash (HCFA)—a residue of high-temperature coal combustion at thermal power plants, in combination with sodium carbonate presents an effective hardening activator of ground granulated blast-furnace slag (GGBFS). Substitution of 10% - 30% of GGBFS by HCFA and premixing of 1% - 3% Na2CO3 to this dry binary binder was discovered to give mortar compression strength of 10 - 30 to 30 - 45 MPa at 7 and 28 days when moist cured at ambient temperature. High-calcium fly ash produced from low-temperature combustion of fuel, like in circulating fluidized bed technology, reacts with water readily and is itself a good hardening activator for GGBFS, so introduction of Na<sub>2</sub>CO<sub>3</sub> into such mix has no noticeable effect on the mortar strength. However, low-temperature HCFA has higher water demand, and the strength of mortar is compromised by this factor. As of today, our research is still ongoing, and we expect to publish more data on different aspects of durability of proposed GGBFS-HCFA binder later.
基金Key Research and Development Plan of Shaanxi Province(2019TSLGY05-04).
文摘The problem of low disposal and utilization rate of bulk industrial solid waste needs to be solved.In this paper,a high-activity admixture composed of steel slag-phosphate slag-limestone powder was proposed for most of the solid waste with low activity and a negative impact on concrete workability,combining the characteristics of each solid waste.The paper demonstrates the feasibility and explains the principle of the composite system in terms of water requirement of standard consistency,setting time,workability,and mechanical properties,combined with the composition of the phases,hydration temperature,and microscopic morphology.The results showed that the steel slag:phosphate slag:limestone=5:2:3 gave the highest activity of the composite system,over 92%.Besides,the composite system had no significant effect on water demand and setting time compared to cement,and it could significantly increase the 7 and 28 d activity of the system.The composite system delayed the exothermic hydration of the cement and reduced the exothermic heat but had no effect on the hydration products.Therefore,the research in this paper dramatically improved the solid waste dissipation in concrete,reduced the amount of cement in concrete and positively responded to the national slogan of carbon neutral and peaking.
基金financially supported by the National Natural Science Foundation of China (Nos.51604065 and 51574082)the National Basic Research Program of China (No.2013CB632603)the Fundamental Funds for the Central Universities (Nos.150203003 and 150202001)
文摘Calcification roasting–acid leaching of high-chromium vanadium slag(HCVS)was conducted to elucidate the roasting and leaching behaviors of vanadium and chromium.The effects of the purity of Ca O,molar ratio between Ca O and V_2O_5(n(Ca O)/n(V_2O_5)),roasting temperature,holding time,and the heating rate used in the oxidation–calcification processes were investigated.The roasting process and mechanism were analyzed by X-ray diffraction(XRD),scanning electron microscopy(SEM),and thermogravimetry–differential scanning calorimetry(TG–DSC).The results show that most of vanadium reacted with Ca O to generate calcium vanadates and transferred into the leaching liquid,whereas almost all of the chromium remained in the leaching residue in the form of(Fe_(0.6)Cr_(0.4))_2O_3.Variation trends of the vanadium and chromium leaching ratios were always opposite because of the competitive reactions of oxidation and calcification between vanadium and chromium with Ca O.Moreover,Ca O was more likely to combine with vanadium,as further confirmed by thermodynamic analysis.When the HCVS with Ca O added in an n(Ca O)/n(V_2O_5)ratio of 0.5 was roasted in an air atmosphere at a heating rate of 10°C/min from room temperature to 950°C and maintained at this temperature for 60 min,the leaching ratios of vanadium and chromium reached91.14%and 0.49%,respectively;thus,efficient extraction of vanadium from HCVS was achieved and the leaching residue could be used as a new raw material for the extraction of chromium.Furthermore,the oxidation and calcification reactions of the spinel phases occurred at 592and 630°C for n(Ca O)/n(V_2O_5)ratios of 0.5 and 5,respectively.
基金financially supported by the National Natural Science Foundation of China(No.51904066)the Fundamental Research Funds for the Central Universities,China(No.N182503032)+1 种基金the Postdoctoral Foundation of Northeastern University,China(No.20190201)the Postdoctoral International Exchange Program,China(Dispatch Project,20190075)
文摘A study on the melting and viscosity properties of the chromium-containing high-titanium melting slag(CaO–SiO2–MgO–Al2O3–TiO2–Cr2O3) with TiO2 contents ranging from 38.63 wt% to 42.63 wt% was conducted. The melting properties were investigated with a meltingpoint apparatus, and viscosity was measured using the rotating cylinder method. The FactSage 7.1 software and X-ray diffraction, in combination with scanning electron microscopy–energy-dispersive spectroscopy(SEM–EDS), were used to characterize the phase equilibrium and microstructure of chromium-containing high-titanium melting slags. The results indicated that an increase in the TiO2 content led to a decrease in the viscosity of the chromium-containing high-titanium melting slag. In addition, the softening temperature, hemispheric temperature, and flowing temperature decreased with increasing TiO2 content. The amount of crystallized anosovite and sphene phases gradually increased with increasing TiO2 content, whereas the amount of perovskite phase decreased. SEM observations revealed that the distribution of the anosovite phase was dominantly influenced by TiO2.
基金Funded by Scientific Research Foundation for Doctors of Xinjiang University(No.BS120119)the Opening Research Foundation of Xinjiang Key Laboratory of Oasis Ecology(No.XJDX0201-2013-05)the National Key Technologies R&D Program of China(No.2014BAC15B01)
文摘Calcium carbide slag, generated in the hydrolysis process of calcium carbide, is an potential carbon capture reagent because its main ingredient is Ca(OH)_2. Calcium carbide slag, a by-product of a resin factory was used as carbon capture reagent. The change of p H and electrical conductivity(EC) of the calcium carbide slag slurry with different solid-to-liquid ratios, as well as the capture efficiency and dynamics under different temperatures and flow rates of CO_2 were studied. The properties of solid were characterized with XRD, TG-DTA, SEM and FT-IR before and after capturing carbon. The results show that the change of p H and EC were greater with low solid-to-liquid ratio than that with high solid-to-liquid ratio. The analysis of XRD and SEM show that the content of Ca CO_3 increased significantly, which improved that Ca(OH)_2 and free Ca O were reacted with CO_2. The results of TG-DTA and FT-IR show that the physicochemical properties and microstructure of the slag changed after capturing CO_2 because of the increase of Ca CO_3 content. All the results mentioned above improve the feasibility of utilizing calcium carbide slag to capture CO_2 and offer a practical way for carbon emission reduction and disposal of wasted calcium carbide slag.
基金supported by the National Natural Science Foundation of China (No. 51574019)
文摘High phosphorus steel slag and carbonized rice husk are two common wastes characterized by high generation and low secondary use values.Through the reduction of high phosphorus steel slag by biomass,both wastes were fully utilized,thus reducing the negative impact on the environment.In this study,variables such as temperature,time,and amount of reactants were changed to determine the optimal conditions for the reaction of steel slag with carbonized rice husk at high temperatures.The actual amount of reducing agent consumed during the reduction was significantly greater than that predicted by theoretical calculations.Adding three carbon equivalent of carbonized rice husk and maintaining at 1500℃ for 30 min could remove 79.25% of P_(2)O_(5) in the slag.By modeling the material cycle in which high phosphorus steel slag was treated with biomass,the product could be used for crop growth.Meanwhile,the reduced iron and residual steel slag can be used tomake steel again,thereby leading to a sharp reduction in fossil fuel usage and greenhouse gas emissions in this process.
基金Sponsored by National Natural Science Foundation of China and Baosteel(50834007)
文摘A new method (gas-based separation plus melt separation) has been proposed to remove phosphorus of the high phosphorus iron ore which was 1.25 % of phosphorus content and 50. 0% of iron content. HSC chemistry package and the coexistence theory of slag structure were adopted for theoretical analysis. The gas-based reduction was carried out using a fixed bed reactor and the ore sample of 80 g with an average particle size of 2 mm were reduced using CO or H2 at temperature of 1 073 K for 5 hours. 50 g of the reduced sample with 3.0% CaO as additive was then subjected to melt separation in an electric furnace at temperature of 1 873 K under Ar atmosphere. In each run, SEM, EDS, optical microscopic examination and chemical analysis of the reduced ore sample, the metal sample and the slag sample were conducted. Results of all gas-based reduction experiments showed that iron metallization ratios were some 65% and the phosphorus compounds in the ore remained unchanged. It was agreed well with the simula- tions except for the iron metallization rate being less than predicted value; this difference was attributed to kinetics. Results of melt separation experiments showed that P content in metal samples is 0.33% (metal sample from H2 reduction product) and 0.27% (metal sample from CO reduction product). The phosphorus partition ratios of both cases were less than predicted values. Some P in the metal samples existed as slag inclusion was considered to be the reason for this discrepancy.
基金Item Sponsored by National Natural Science Foundation of China(51090384)National High Technology Research and Development Program(863 Program)of China(2012AA062302,2012AA062304)Fundamental Research Funds for the Central Universities of China(N110202001)
文摘In order to clarify the slag system of high Cr2O3 vanadium-titanium magnetite smelting in BF (blast furnace), the melting properties of slag samples prepared by analytically pure reagents were measured. By means of orthogonal test synthetic weighted score method, the optimal slag for high Cr2O3 vanadium-titanium magnetite was obtained, which contained 10% MgO, 8% TiO2 and 15% Al2O3, with the binary basicity being 1.15. In addition, the effects of basicity, MgO, TiO2 and A12 03 on slag melting properties were investigated by single factor test, and the results showed that, with increasing the basicity or TiO2 content, melting temperature (Tin) increased, whereas initial vis- cosity (r/0) and high temperature viscosity (r/h) decreased. With increasing the MgO content, Tm decreased firstly and then increased. With increasing the Al2 O3 content, Tm increased, and η0 and r/h decreased firstly and then increased.
基金Project(2020YFC1909203) supported by the National Key R&D Project of ChinaProject(51874356) supported by the National Natural Science Foundation of ChinaProject(2018TP1002) supported by the Key Laboratory of Hunan Province for Clean and Efficiency Utilization of Strategic Calcium-containing Mineral Resources, China。
文摘Nozzle blockage is a common problem during continuous casting of Al-killed steel, and calcium treatment is widely used to resolve it. In consideration of the production costs, the technology of nonmetallic inclusion control was studied to optimize the Ca consumption. The proposed process of slag washing was employed, and the refining slag composition, deoxidation conditions and alloying systems were optimized. Using these measures, the steel cleanliness before Ca addition was improved significantly, and the corresponding Ca consumption was reduced. More- over, the continuous casting could be conducted smoothly.