Soil aggregate stability,as an important indicator of soil functions,may be affected by seasonal freezing and thawing(SFT)and land use in high cold and wet regions.Therefore,comprehensive understanding the effects of ...Soil aggregate stability,as an important indicator of soil functions,may be affected by seasonal freezing and thawing(SFT)and land use in high cold and wet regions.Therefore,comprehensive understanding the effects of SFT on aggregate stability in orchards during winter and spring is crucial to develop appropriate management strategies that can effectively alleviate the degradation of soil quality to ensure sustainable development of orchard ecosystems.To determine the mechanism of degradation in orchard soil quality,the effects of SFT on the stability of water-stable aggregates were examined in apple-pear orchards(Pyrus ussuriensis var.ovoidea)of four different ages(11,25,40,and 63 yr)on 0 to 5%slopes before freezing and after thawing from October 2015 to June 2016 in Longjing City,Yanbian Prefecture,Northeast China,involving a comparison of planted versus adjacent uncultivated lands(control).Soil samples were collected to investigate water-stable aggregate stability in three incremental soil layers(0–20,20–40 and 40–60 cm).In the same samples,iron oxide,organic matter,and clay contents of the soil were also determined.Results showed that the destructive influences of SFT on water-stable aggregates were more pronounced with the increased orchards ages,and SFT exerted severe effects on water-stable aggregates of older orchards(40 and 63 yr)than juvenile orchards.Undergoing SFT,the soil instability index and the percentage of aggregate destruction increased by mean 0.15 mm and 1.86%,the degree of aggregation decreased by mean 1.32%,and the erosion resistance weakened,which consequently led to aggregate stability decreased.In addition,soil free,amorphous,and crystalline iron oxide as well as soil organic matter and clay contents are all important factors affecting the stability of water-stable aggregates,and their changes in their contents were consistent with those in the stability of water-stable aggregates.The results of this study suggest that long-term planting fruit trees can exacerbate the damaging effects of SFT on aggregate stability and further soil erosion increases and nutrient losses in an orchard,which hider sustainable use of soil and the productivity orchards.展开更多
By using the monthly mean grid data of NCAR/NCEP reanalysis at 500 hPa geopotential height from 1958 to 1997,the relationship between the Northeast cold vortex and the western Pacific subtropical high was analyzed.The...By using the monthly mean grid data of NCAR/NCEP reanalysis at 500 hPa geopotential height from 1958 to 1997,the relationship between the Northeast cold vortex and the western Pacific subtropical high was analyzed.The influence of the sea surface temperature(SST) and outgoing longwave radiation(OLR) on the Northeast cold vortex and subtropical high was studied.As was shown in the results,in summer,there was a positive correlation between the Northeast cold vortex and the subtropical high,and an anti-phase relationship existed between the threshold characteristic line of GMS-SST=28 ℃ and the height index of the Northeast cold vortex and the subtropical high.With the gradual northward moving of the threshold characteristic line,the subtropical high was weakening,and the Northeast cold vortex was increasing and strengthening.展开更多
Objective To probe into the effective acupuncture treatment for high fever and other clinical relevant symptoms in common cold. Methods Based on randoming and multi-central clinical trial principle, the included 276 c...Objective To probe into the effective acupuncture treatment for high fever and other clinical relevant symptoms in common cold. Methods Based on randoming and multi-central clinical trial principle, the included 276 cases were randomized into experimental group (138 cases) and control group (138 cases) in statistics. Electric acupuncture on Dazhui(大椎 GV14) was applied in experimental group and the injection with antondine was in control group. The immediate antipyretic and clinical therapeutic effects were observed in 24 h. Results The body temperatures at different times in experimental group were all lower than those in control group after treatment (P〈 0.01 ). The scores of relevant symptoms in 3- 24 h after treatment were lower than those in control group (P〈0.05). The response time (1.42± 1.79) h in experimental group was shorter than that (3.44±5.10) h in control group (P〈0.05). The response times for chills, soreness of limbs, headach and sweating in experimental group were shorter than those in control group (P〈0. 01 ). The recovery times for chills and headache in experimental group were shorter than those in control group (P〈0.05). The systematic therapeutic effects were different significantly between two groups in 24 h (P〈0.05). Conclusion Acupuncture on Dazhui(大椎 GV14) had achieved definite effects on treatment for high fever in common cold. It released remarkably chills, soreness of limbs, headache and sweating and improved the systematic therapeutic effects on common cold.展开更多
The novel Ni-Ir/γ-Al2O3 catalyst, denoted as NIA-P, was prepared by high-frequency cold plasma direct reduction method under ambient conditions without thermal treatment, and the conventional sample, denoted as NIA-C...The novel Ni-Ir/γ-Al2O3 catalyst, denoted as NIA-P, was prepared by high-frequency cold plasma direct reduction method under ambient conditions without thermal treatment, and the conventional sample, denoted as NIA-CR, was prepared by impregnation, thermal calcination, and then by H2 reduction method. The effects of reduction methods on the catalysts for ammonia decomposition were studied, and they were characterized by XRD, N2 adsorption, XPS, and H2-TPD. It was found that the plasma-reduced NIA-P sample showed a better catalytic performance, over which ammonia conversion was 68.9%, at T = 450℃, P = 1 atm, and GHSV = 30, 000 h^-1. It was 31.7% higher than that of the conventional NIA-CR sample. XRD results showed that the crystallite size decreased for the sample with plasma reduction, and the dispersion of active components was improved. There were more active components on the surface of the NIA-P sample from the XPS results. This effect resulted in the higher activity for decomposition of ammonia. Meanwhile, the plasma process significantly decreased the time of preparing catalyst.展开更多
We propose a controllable high-efficiency electrostatic surface trap for cold polar molecules on a chip by using two insulator-embedded charged rings and a grounded conductor plate. We calculate Stark energy structure...We propose a controllable high-efficiency electrostatic surface trap for cold polar molecules on a chip by using two insulator-embedded charged rings and a grounded conductor plate. We calculate Stark energy structure pattern of ND3 molecules in an external electric field using the method of matrix diagonalization. We analyze how the voltages that are applied to the ring electrodes affect the depth of the efficient well and the controllability of the distance between the trap center and the surface of the chip. To obtain a better understanding, we simulate the dynamical loading and trapping processes of ND3 molecules in a |J, KM = |1,-1 state by using classical Monte–Carlo method. Our study shows that the loading efficiency of our trap can reach ~ 88%. Finally, we study the adiabatic cooling of cold molecules in our surface trap by linearly lowering the potential-well depth(i.e., lowering the trapping voltage), and find that the temperature of the trapped ND3 molecules can be adiabatically cooled from 34.5 m K to ~ 5.8 m K when the trapping voltage is reduced from-35 k V to-3 k V.展开更多
The tensile strength and ductility of a high nitrogen nickel-free austenitic stainless steel with solution and cold rolling treatment were investigated by performing tensile tests at different strain rates and at room...The tensile strength and ductility of a high nitrogen nickel-free austenitic stainless steel with solution and cold rolling treatment were investigated by performing tensile tests at different strain rates and at room temperature. The tensile tests demonstrated that this steel exhibits a significant strain rate and cold rolling dependence of the tensile strength and ductility.With the increase of the strain rate from 10^-4s^-1to 1 s^-1, the yield strength and ultimate tensile strength increase and the uniform elongation and total elongation decrease. The analysis of the double logarithmic stress–strain curves showed that this steel exhibits a two-stage strain hardening behavior, which can be well examined and analyzed by using the Ludwigson equation. The strain hardening exponents at low and high strain regions(n2and n1) and the transition strain(εL) decrease with increasing strain rate and the increase of cold rolling RA. Based on the analysis results of the stress–strain curves, the transmission electron microscopy characterization of the microstructure and the scanning electron microscopy observation of the deformation surfaces, the significant strain rate and cold rolling dependence of the strength and ductility of this steel were discussed and connected with the variation in the work hardening and dislocation activity with strain rate and cold rolling.展开更多
By mixing preheated high-aluminum bronze powders with different amounts of Al_2O_3 powder, a low-pressure cold-sprayed coating was prepared and sprayed onto a Cr12MoV steel substrate. The hardness of the coating and t...By mixing preheated high-aluminum bronze powders with different amounts of Al_2O_3 powder, a low-pressure cold-sprayed coating was prepared and sprayed onto a Cr12MoV steel substrate. The hardness of the coating and the bonding strength between the coating and the substrate were tested with a HV-1000 microhardness tester and a mechanical universal testing machine. The surface microstructure, cross-section and tensile fracture surface of the coating were observed with a scanning electron microscope(SEM). Correspondingly, the influences of the preheat treatment temperature of the bronze powder and the Al_2O_3 content on the coating performance were investigated. The results indicate that the hardness of bronze powders decreased and the coating deposition rate increased after the preheating treatment of the bronze powder. The Al_2O_3 content in the mixed powders contributed to the deformation of bronze powders during the spraying process. This trend resulted in varied performance of the coating.展开更多
To better understand the relationship between anticyclones in Siberia and cold-air activities and temperature changes in East Asia,this study proposes a 2D anticyclone identification method based on a deep-learning mo...To better understand the relationship between anticyclones in Siberia and cold-air activities and temperature changes in East Asia,this study proposes a 2D anticyclone identification method based on a deep-learning model,Mask R-CNN,which can reliably detect the changes in the morphological characteristics of anticyclones.Using the new method,the authors identified the southeastward-extending Siberian cold high(SEESCH),which greatly affects wintertime temperatures in China.This type of cold high is one of the main synoptic systems(45.7%)emerging from Siberia in winter.Cold air carried by SEESCH has a significant negative correlation with the temperature changes in the downstream area,and 52% of SEESCHs are accompanied by cold-air accumulation in North and East China,which has a significant impact on regional cooling.These results provide clues for studying the interconnection between SEESCHs and extreme cold events.展开更多
Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolli...Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolling deformation results in significant refinement of the microstructure of this steel, with its average twin thickness reducing from 6.4 μm to 14 nm. Nanoindentation tests at different strain rates demonstrate that the hardness of the steel with nano-scale twins (nt-HNASS) is about 2 times as high as that of steel with micro-scale twins (mt-HNASS). The hardness of nt-HNASS exhibits a pronounced strain rate dependence with a strain rate sensitivity (m value) of 0.0319, which is far higher than that of mt-HNASS (m = 0.0029). nt-HNASS shows more significant load plateaus and a higher creep rate than mt-HNASS. Analysis reveals that higher hardness and larger m value of nt-HNASS arise from stronger strain hardening role, which is caused by the higher storage rate of dislocations and the interactions between dislocations and high density twins. The more significant load plateaus and higher creep rates of nt-HNASS are due to the rapid relaxation of the dislocation structures generated during loading.展开更多
According to the technical characteristics of short fixed wheelbase of a high-speed carriage, a subgrade-track integrated space mechanical response analysis model is proposed for trains under the action ofbiaxial load...According to the technical characteristics of short fixed wheelbase of a high-speed carriage, a subgrade-track integrated space mechanical response analysis model is proposed for trains under the action ofbiaxial load after the comparison of the stress distribution characteristics of the ballast track subgrade bed structures for high-speed railway under the action of uniaxial load and biaxial load. The loading threshold value (high-cycle long-term dynamic strength) under the circum- stance where the cumulative deformation of subgrade structure gradually develops and finally reaches the convergent state, and its relationship with the foundation coefficient K30 were deduced, based on the characteristics of cumulative defor- mation evolution obtained from the unit structure filling model test under the action of cyclic loading. In view of structure stability and frost resistance requirements of the railway subgrade in cold regions, technical conditions to maintain good service performance of subgrade structure of high-speed railway ballasted track are discussed and analyzed. Study results show that the additive effect manifests itself obviously for railway train bogies under the action of biaxial load than uni- axial load, which has a significant dynamic effect on the subgrade bed bottom and a slight effect on the surface layer. Thus, the adoption of a biaxial load model in the design of a high-speed railway subgrade accurately reflects the vehicle load. Pursuant to the structure design principle, the design method of the subgrade structure of high-speed railway ballasted track is proposed to meet the technical requirements such as structural strength, bearing stiffness and high-cyclic and long-term stability. Technical indicators are obtained for the variation of thickness of the surface layer of reinforced sub- grade bed in the double-layer subgrade mode along with the change of K30 at the subgrade bed bottom. The double-layer structure mode of "closure on the upper layer and drainage on the lower layer" was proposed in order to meet the water- proofing and drainage requirements of the upper layer of the subgrade bed in cold regions. A dense-framework graded gravel filler with weak water permeability at a coefficient of 10 4 cm/s is used on the upper layer and the void-framework graded gravel filler at the water permeability coefficient of 10 2 cm/s is adopted on the lower layer.展开更多
We present a cold atom system with a dark-line two-dimensional magneto-optical trap, to increase the atomic density by suppressing the atomic radiation pressure. Optical depth (OD) and duty cycle are used to evaluat...We present a cold atom system with a dark-line two-dimensional magneto-optical trap, to increase the atomic density by suppressing the atomic radiation pressure. Optical depth (OD) and duty cycle are used to evaluate the system performance. We demonstrate a 100% increase in OD with the dark line, and obtain an ultrahigh OD of 264 with 10% for the duty cycle. Also, with an efficient dark line region, the OD could maintain above i00 with duty cycle as high as 30%. The cold atomic ensemble with an ultrahigh OD with a 10%-30% duty cycle is particularly advantageous in quantum i^formation processing and communication.展开更多
In this study, a method to prepare self-fused alloy coat, which started with a cold adhesion precoating and then induction fusing plus, is presented. It also intended to analyze the mechanism, microstructure and anitw...In this study, a method to prepare self-fused alloy coat, which started with a cold adhesion precoating and then induction fusing plus, is presented. It also intended to analyze the mechanism, microstructure and anitwear ability of the coat. The workpiece was precoated with Ni60 powder through an adhesion agent. The oven-dried precoat was then heated by a high frequency induction generated by 100kw power with a frequency of 250kHz. The technological parameters of the method were determined through analysis of the thermal magnetism, thermal resistivity and anti-induction mechanism. By comparing the microstrucrures and properties of the coat produced by cold adhesion, thermal spraying and laser refusing, it is concluded that: (1) One side of the workpiece should be preheated to 200℃ before induction fusion, and the range of induction frequency should be 200~250kHz. (2) The microstrucrure of the coat by cold adhesion is superior to that by thermal spraying, but the particle size range should be 0.047~0.044mm (200~320 meshes) (3) The corrosion resistance of Ni60 coat by cold adhesion is better than that by thermal spraying, and the cold adhesion is the best method to prepare the antiwear coat.展开更多
The formation mechanism of the cold-rolled strip shape with high tension was studied. An advanced method to calculate the allowable variation of strip transverse profiles was established by the strip buckling criterio...The formation mechanism of the cold-rolled strip shape with high tension was studied. An advanced method to calculate the allowable variation of strip transverse profiles was established by the strip buckling criterion, which can be more properly used in cold rolling. With this method, the aim allowable variation of the product strip transverse profile and the required transverse profile range of incoming strips can be reached. Besides, this method has been successfully applied in a domestic tandem cold mill, and the transverse profile range of incoming strips suggested with this method is more practicable and complete. Consequently, the good performance is acquired.展开更多
With its superior comprehensive properties, cold-rolled enameling steel is widely applied in many fields. However, its low yield stress greatly limits its application. This study aims to improve the yield stress of co...With its superior comprehensive properties, cold-rolled enameling steel is widely applied in many fields. However, its low yield stress greatly limits its application. This study aims to improve the yield stress of cold-rolled enameling steel under the premise of meeting formability and enameling properties by strengthening the ferrite matrix via solid strengthening of Mn. The grain size of ferrite before and after enameling,mechanical properties of annealed steel, and precipitation behavior of second-phase precipitates are obtained through studying the microstructure and properties of enameling steel at different stages. The microstructure of the steel investigated at room temperature is found to contain equiaxial ferrite and bunchy cementite particles;the ferrite grains have grown to some extent after enameling. The fine dispersed TiC particles and cementite particles contained in the annealed steel are the main factors improving the hydrogen storage capability. Finally, the result of a falling-ball impact test shows that the steel has achieved excellent adherence.展开更多
Based on the conventional high-and low-altitude and surface observation data,the weather analysis and diagnosis methods were applied to analyze the cold wave process of Ulanqab in January 2016 from the aspects of weat...Based on the conventional high-and low-altitude and surface observation data,the weather analysis and diagnosis methods were applied to analyze the cold wave process of Ulanqab in January 2016 from the aspects of weather reality,circulation background,weather causes,and forecast test.The results show that strong cold air accumulated gradually near Lake Baikal and Central Siberia,affecting the city in a northwest path.During the cold wave process,the transverse trough moved southwards slowly at 500 hPa,and the ground cold high pressure was strong and stable.The cold air continued to move southwards,resulting in the strong cold wave and gale weather with a large impact range and long duration.The high-altitude jet at 300 hPa strengthened the cold wave pile,which was conducive to the outbreak of the cold wave.The intensity and location changes of the 500 hPa positive vorticity center,850 hPa cold advection region and 24-h ground pressure variation well showed the intensity of the cold wave process and the variation of the affected region.The influence of strong cold advection,ground positive pressure variation,and strong vertical wind shear were the main reasons for a strong drop in temperature and gale weather in this process.The test results of prediction reveal that the forecast value of the maximum temperature were relatively lower than the actual value,while the forecast of the minimum temperature was more accurate.The three warning signals were issued timely and accurately.The circulation pattern predicted by numerical models was more accurate in the early stage of the process,but there was an error in the late stage,and the forecast system moved slower than the actual situation.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.31460117,41877024)。
文摘Soil aggregate stability,as an important indicator of soil functions,may be affected by seasonal freezing and thawing(SFT)and land use in high cold and wet regions.Therefore,comprehensive understanding the effects of SFT on aggregate stability in orchards during winter and spring is crucial to develop appropriate management strategies that can effectively alleviate the degradation of soil quality to ensure sustainable development of orchard ecosystems.To determine the mechanism of degradation in orchard soil quality,the effects of SFT on the stability of water-stable aggregates were examined in apple-pear orchards(Pyrus ussuriensis var.ovoidea)of four different ages(11,25,40,and 63 yr)on 0 to 5%slopes before freezing and after thawing from October 2015 to June 2016 in Longjing City,Yanbian Prefecture,Northeast China,involving a comparison of planted versus adjacent uncultivated lands(control).Soil samples were collected to investigate water-stable aggregate stability in three incremental soil layers(0–20,20–40 and 40–60 cm).In the same samples,iron oxide,organic matter,and clay contents of the soil were also determined.Results showed that the destructive influences of SFT on water-stable aggregates were more pronounced with the increased orchards ages,and SFT exerted severe effects on water-stable aggregates of older orchards(40 and 63 yr)than juvenile orchards.Undergoing SFT,the soil instability index and the percentage of aggregate destruction increased by mean 0.15 mm and 1.86%,the degree of aggregation decreased by mean 1.32%,and the erosion resistance weakened,which consequently led to aggregate stability decreased.In addition,soil free,amorphous,and crystalline iron oxide as well as soil organic matter and clay contents are all important factors affecting the stability of water-stable aggregates,and their changes in their contents were consistent with those in the stability of water-stable aggregates.The results of this study suggest that long-term planting fruit trees can exacerbate the damaging effects of SFT on aggregate stability and further soil erosion increases and nutrient losses in an orchard,which hider sustainable use of soil and the productivity orchards.
基金supported by the National Natural Science Foundation of China [grant number 41991281]the National Key R&D Program of China [grant number 2018YFA0606403]the National Natural Science Foundation of China [grant number 41790472]。
文摘By using the monthly mean grid data of NCAR/NCEP reanalysis at 500 hPa geopotential height from 1958 to 1997,the relationship between the Northeast cold vortex and the western Pacific subtropical high was analyzed.The influence of the sea surface temperature(SST) and outgoing longwave radiation(OLR) on the Northeast cold vortex and subtropical high was studied.As was shown in the results,in summer,there was a positive correlation between the Northeast cold vortex and the subtropical high,and an anti-phase relationship existed between the threshold characteristic line of GMS-SST=28 ℃ and the height index of the Northeast cold vortex and the subtropical high.With the gradual northward moving of the threshold characteristic line,the subtropical high was weakening,and the Northeast cold vortex was increasing and strengthening.
文摘Objective To probe into the effective acupuncture treatment for high fever and other clinical relevant symptoms in common cold. Methods Based on randoming and multi-central clinical trial principle, the included 276 cases were randomized into experimental group (138 cases) and control group (138 cases) in statistics. Electric acupuncture on Dazhui(大椎 GV14) was applied in experimental group and the injection with antondine was in control group. The immediate antipyretic and clinical therapeutic effects were observed in 24 h. Results The body temperatures at different times in experimental group were all lower than those in control group after treatment (P〈 0.01 ). The scores of relevant symptoms in 3- 24 h after treatment were lower than those in control group (P〈0.05). The response time (1.42± 1.79) h in experimental group was shorter than that (3.44±5.10) h in control group (P〈0.05). The response times for chills, soreness of limbs, headach and sweating in experimental group were shorter than those in control group (P〈0. 01 ). The recovery times for chills and headache in experimental group were shorter than those in control group (P〈0.05). The systematic therapeutic effects were different significantly between two groups in 24 h (P〈0.05). Conclusion Acupuncture on Dazhui(大椎 GV14) had achieved definite effects on treatment for high fever in common cold. It released remarkably chills, soreness of limbs, headache and sweating and improved the systematic therapeutic effects on common cold.
基金National Natural Science Foundation of China (20590360)New Century Excellent Talent Project of China (NCET-05-0783)
文摘The novel Ni-Ir/γ-Al2O3 catalyst, denoted as NIA-P, was prepared by high-frequency cold plasma direct reduction method under ambient conditions without thermal treatment, and the conventional sample, denoted as NIA-CR, was prepared by impregnation, thermal calcination, and then by H2 reduction method. The effects of reduction methods on the catalysts for ammonia decomposition were studied, and they were characterized by XRD, N2 adsorption, XPS, and H2-TPD. It was found that the plasma-reduced NIA-P sample showed a better catalytic performance, over which ammonia conversion was 68.9%, at T = 450℃, P = 1 atm, and GHSV = 30, 000 h^-1. It was 31.7% higher than that of the conventional NIA-CR sample. XRD results showed that the crystallite size decreased for the sample with plasma reduction, and the dispersion of active components was improved. There were more active components on the surface of the NIA-P sample from the XPS results. This effect resulted in the higher activity for decomposition of ammonia. Meanwhile, the plasma process significantly decreased the time of preparing catalyst.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10674047,10804031,10904037,10904060,10974055,11034002,and61205198)the National Key Basic Research and Development Program of China(Grant Nos.2006CB921604 and 2011CB921602)+2 种基金the Basic Key Program of Shanghai Municipality,China(Grant No.07JC14017)the Fundamental Research Funds for the Central Universitiesthe Shanghai Leading Academic Discipline Project,China(Grant No.B408)
文摘We propose a controllable high-efficiency electrostatic surface trap for cold polar molecules on a chip by using two insulator-embedded charged rings and a grounded conductor plate. We calculate Stark energy structure pattern of ND3 molecules in an external electric field using the method of matrix diagonalization. We analyze how the voltages that are applied to the ring electrodes affect the depth of the efficient well and the controllability of the distance between the trap center and the surface of the chip. To obtain a better understanding, we simulate the dynamical loading and trapping processes of ND3 molecules in a |J, KM = |1,-1 state by using classical Monte–Carlo method. Our study shows that the loading efficiency of our trap can reach ~ 88%. Finally, we study the adiabatic cooling of cold molecules in our surface trap by linearly lowering the potential-well depth(i.e., lowering the trapping voltage), and find that the temperature of the trapped ND3 molecules can be adiabatically cooled from 34.5 m K to ~ 5.8 m K when the trapping voltage is reduced from-35 k V to-3 k V.
基金Project supported by the National Natural Science Foundations of China(Grant Nos.51371089 and 51401083)
文摘The tensile strength and ductility of a high nitrogen nickel-free austenitic stainless steel with solution and cold rolling treatment were investigated by performing tensile tests at different strain rates and at room temperature. The tensile tests demonstrated that this steel exhibits a significant strain rate and cold rolling dependence of the tensile strength and ductility.With the increase of the strain rate from 10^-4s^-1to 1 s^-1, the yield strength and ultimate tensile strength increase and the uniform elongation and total elongation decrease. The analysis of the double logarithmic stress–strain curves showed that this steel exhibits a two-stage strain hardening behavior, which can be well examined and analyzed by using the Ludwigson equation. The strain hardening exponents at low and high strain regions(n2and n1) and the transition strain(εL) decrease with increasing strain rate and the increase of cold rolling RA. Based on the analysis results of the stress–strain curves, the transmission electron microscopy characterization of the microstructure and the scanning electron microscopy observation of the deformation surfaces, the significant strain rate and cold rolling dependence of the strength and ductility of this steel were discussed and connected with the variation in the work hardening and dislocation activity with strain rate and cold rolling.
基金financially supported by the National Key Research and Development Program of China(No.2016YFE0111400)the Program on Key Research Project of Gansu Province(No.17YF1WA159)the National High-end Foreign Experts Program of China(No.GTD20156200088)
文摘By mixing preheated high-aluminum bronze powders with different amounts of Al_2O_3 powder, a low-pressure cold-sprayed coating was prepared and sprayed onto a Cr12MoV steel substrate. The hardness of the coating and the bonding strength between the coating and the substrate were tested with a HV-1000 microhardness tester and a mechanical universal testing machine. The surface microstructure, cross-section and tensile fracture surface of the coating were observed with a scanning electron microscope(SEM). Correspondingly, the influences of the preheat treatment temperature of the bronze powder and the Al_2O_3 content on the coating performance were investigated. The results indicate that the hardness of bronze powders decreased and the coating deposition rate increased after the preheating treatment of the bronze powder. The Al_2O_3 content in the mixed powders contributed to the deformation of bronze powders during the spraying process. This trend resulted in varied performance of the coating.
基金supported jointly by the National Key Research and Development Program of China[grant number 2019YFC1510201]the National Natural Science Foundation of China[grant number 41975073].
文摘To better understand the relationship between anticyclones in Siberia and cold-air activities and temperature changes in East Asia,this study proposes a 2D anticyclone identification method based on a deep-learning model,Mask R-CNN,which can reliably detect the changes in the morphological characteristics of anticyclones.Using the new method,the authors identified the southeastward-extending Siberian cold high(SEESCH),which greatly affects wintertime temperatures in China.This type of cold high is one of the main synoptic systems(45.7%)emerging from Siberia in winter.Cold air carried by SEESCH has a significant negative correlation with the temperature changes in the downstream area,and 52% of SEESCHs are accompanied by cold-air accumulation in North and East China,which has a significant impact on regional cooling.These results provide clues for studying the interconnection between SEESCHs and extreme cold events.
基金Project supported by the National Natural Science Foundations of China (Grant Nos.51371089 and 51201068)the National Key Basic Research and Development Program of China (Grant No.2010CB631001)
文摘Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolling deformation results in significant refinement of the microstructure of this steel, with its average twin thickness reducing from 6.4 μm to 14 nm. Nanoindentation tests at different strain rates demonstrate that the hardness of the steel with nano-scale twins (nt-HNASS) is about 2 times as high as that of steel with micro-scale twins (mt-HNASS). The hardness of nt-HNASS exhibits a pronounced strain rate dependence with a strain rate sensitivity (m value) of 0.0319, which is far higher than that of mt-HNASS (m = 0.0029). nt-HNASS shows more significant load plateaus and a higher creep rate than mt-HNASS. Analysis reveals that higher hardness and larger m value of nt-HNASS arise from stronger strain hardening role, which is caused by the higher storage rate of dislocations and the interactions between dislocations and high density twins. The more significant load plateaus and higher creep rates of nt-HNASS are due to the rapid relaxation of the dislocation structures generated during loading.
基金financially supported by the State Key Development Program for Basic Research of China(973 Program,Grant No.2013CB036204)
文摘According to the technical characteristics of short fixed wheelbase of a high-speed carriage, a subgrade-track integrated space mechanical response analysis model is proposed for trains under the action ofbiaxial load after the comparison of the stress distribution characteristics of the ballast track subgrade bed structures for high-speed railway under the action of uniaxial load and biaxial load. The loading threshold value (high-cycle long-term dynamic strength) under the circum- stance where the cumulative deformation of subgrade structure gradually develops and finally reaches the convergent state, and its relationship with the foundation coefficient K30 were deduced, based on the characteristics of cumulative defor- mation evolution obtained from the unit structure filling model test under the action of cyclic loading. In view of structure stability and frost resistance requirements of the railway subgrade in cold regions, technical conditions to maintain good service performance of subgrade structure of high-speed railway ballasted track are discussed and analyzed. Study results show that the additive effect manifests itself obviously for railway train bogies under the action of biaxial load than uni- axial load, which has a significant dynamic effect on the subgrade bed bottom and a slight effect on the surface layer. Thus, the adoption of a biaxial load model in the design of a high-speed railway subgrade accurately reflects the vehicle load. Pursuant to the structure design principle, the design method of the subgrade structure of high-speed railway ballasted track is proposed to meet the technical requirements such as structural strength, bearing stiffness and high-cyclic and long-term stability. Technical indicators are obtained for the variation of thickness of the surface layer of reinforced sub- grade bed in the double-layer subgrade mode along with the change of K30 at the subgrade bed bottom. The double-layer structure mode of "closure on the upper layer and drainage on the lower layer" was proposed in order to meet the water- proofing and drainage requirements of the upper layer of the subgrade bed in cold regions. A dense-framework graded gravel filler with weak water permeability at a coefficient of 10 4 cm/s is used on the upper layer and the void-framework graded gravel filler at the water permeability coefficient of 10 2 cm/s is adopted on the lower layer.
基金Supported by the National Natural Science Foundation of China under Grant Nos 91436211 and 11204086the National Basic Research Program of China under Grant No 2011CB921604the Shanghai Science and Technology Committee under Grant No 13PJ1402100
文摘We present a cold atom system with a dark-line two-dimensional magneto-optical trap, to increase the atomic density by suppressing the atomic radiation pressure. Optical depth (OD) and duty cycle are used to evaluate the system performance. We demonstrate a 100% increase in OD with the dark line, and obtain an ultrahigh OD of 264 with 10% for the duty cycle. Also, with an efficient dark line region, the OD could maintain above i00 with duty cycle as high as 30%. The cold atomic ensemble with an ultrahigh OD with a 10%-30% duty cycle is particularly advantageous in quantum i^formation processing and communication.
文摘In this study, a method to prepare self-fused alloy coat, which started with a cold adhesion precoating and then induction fusing plus, is presented. It also intended to analyze the mechanism, microstructure and anitwear ability of the coat. The workpiece was precoated with Ni60 powder through an adhesion agent. The oven-dried precoat was then heated by a high frequency induction generated by 100kw power with a frequency of 250kHz. The technological parameters of the method were determined through analysis of the thermal magnetism, thermal resistivity and anti-induction mechanism. By comparing the microstrucrures and properties of the coat produced by cold adhesion, thermal spraying and laser refusing, it is concluded that: (1) One side of the workpiece should be preheated to 200℃ before induction fusion, and the range of induction frequency should be 200~250kHz. (2) The microstrucrure of the coat by cold adhesion is superior to that by thermal spraying, but the particle size range should be 0.047~0.044mm (200~320 meshes) (3) The corrosion resistance of Ni60 coat by cold adhesion is better than that by thermal spraying, and the cold adhesion is the best method to prepare the antiwear coat.
基金supported by the National Key Technologies R & D Program of China (No.2006BAE03A13)
文摘The formation mechanism of the cold-rolled strip shape with high tension was studied. An advanced method to calculate the allowable variation of strip transverse profiles was established by the strip buckling criterion, which can be more properly used in cold rolling. With this method, the aim allowable variation of the product strip transverse profile and the required transverse profile range of incoming strips can be reached. Besides, this method has been successfully applied in a domestic tandem cold mill, and the transverse profile range of incoming strips suggested with this method is more practicable and complete. Consequently, the good performance is acquired.
文摘With its superior comprehensive properties, cold-rolled enameling steel is widely applied in many fields. However, its low yield stress greatly limits its application. This study aims to improve the yield stress of cold-rolled enameling steel under the premise of meeting formability and enameling properties by strengthening the ferrite matrix via solid strengthening of Mn. The grain size of ferrite before and after enameling,mechanical properties of annealed steel, and precipitation behavior of second-phase precipitates are obtained through studying the microstructure and properties of enameling steel at different stages. The microstructure of the steel investigated at room temperature is found to contain equiaxial ferrite and bunchy cementite particles;the ferrite grains have grown to some extent after enameling. The fine dispersed TiC particles and cementite particles contained in the annealed steel are the main factors improving the hydrogen storage capability. Finally, the result of a falling-ball impact test shows that the steel has achieved excellent adherence.
文摘Based on the conventional high-and low-altitude and surface observation data,the weather analysis and diagnosis methods were applied to analyze the cold wave process of Ulanqab in January 2016 from the aspects of weather reality,circulation background,weather causes,and forecast test.The results show that strong cold air accumulated gradually near Lake Baikal and Central Siberia,affecting the city in a northwest path.During the cold wave process,the transverse trough moved southwards slowly at 500 hPa,and the ground cold high pressure was strong and stable.The cold air continued to move southwards,resulting in the strong cold wave and gale weather with a large impact range and long duration.The high-altitude jet at 300 hPa strengthened the cold wave pile,which was conducive to the outbreak of the cold wave.The intensity and location changes of the 500 hPa positive vorticity center,850 hPa cold advection region and 24-h ground pressure variation well showed the intensity of the cold wave process and the variation of the affected region.The influence of strong cold advection,ground positive pressure variation,and strong vertical wind shear were the main reasons for a strong drop in temperature and gale weather in this process.The test results of prediction reveal that the forecast value of the maximum temperature were relatively lower than the actual value,while the forecast of the minimum temperature was more accurate.The three warning signals were issued timely and accurately.The circulation pattern predicted by numerical models was more accurate in the early stage of the process,but there was an error in the late stage,and the forecast system moved slower than the actual situation.