The development and enrichment of organic materials with narrowband emission in longer wavelength regions beyond 515 nm still remains a great challenge.Herein,a synthetic methodology for narrowband emission materials ...The development and enrichment of organic materials with narrowband emission in longer wavelength regions beyond 515 nm still remains a great challenge.Herein,a synthetic methodology for narrowband emission materials has been proposed to functionalize multiple resonance(MR)skeletons and generate a universal building block,namely,the key intermediate DtCzB-Bpin,which can be utilized to construct multifarious thermally activated delayed fluorescence(TADF)materials with high color purity through a simple one-step Suzuki coupling reaction.Based on this unique synthetic strategy,a series of efficient narrowband green TADF emitters has been constructed by localized attachment of 1,3,5-triazine and pyrimidine derivatives-based acceptors onto B–N-containing MR frameworks with 1,3-bis(3,6-di-tertbutylcarbazol-9-yl)benzene(DtCz)as the ligand.The precise modulation of the acceptor is an intelligent approach to achieve bathochromic shift and narrowband emission simultaneously.The DtCzB-TPTRZbased organic light-emitting diode(OLED)exhibits pure green emission with Commission Internationale de L’Eclairage(CIE)coordinates of(0.23,0.68),a maximum external quantum efficiency(EQE)of 30.6%,and relatively low efficiency roll-off.展开更多
Fluorescent carbon dots(CDs)have recently become a research hotspot in multidisciplinary fields owing to their distinctive advantages,including outstanding photoluminescence properties,high biocompatibility,low toxici...Fluorescent carbon dots(CDs)have recently become a research hotspot in multidisciplinary fields owing to their distinctive advantages,including outstanding photoluminescence properties,high biocompatibility,low toxicity,and abundant raw materials.Among the promising CDs,narrow‐bandwidth emissive CDs with high color purity have emerged as a rising star in recent years because of their significant potential applications in bioimaging,information sensing,and photoelectric displays.In this review,the state-of-the-art advances of narrow-bandwidth emissive CDs are systematically summarized,and the factors influencing the emission bandwidth,preparation methods,and applications of narrow-bandwidth emissive CDs are described in detail.Besides,existing challenges and future perspectives for achieving high-performance narrow-bandwidth emissive CDs are also discussed.This overview paper is expected to generate more interest and promote the rapid development of this significant research area.展开更多
In this work,through a facile method of low-temperature(only 350℃)self-reduction,1D nano-sized M_(2)B_(5)O_(9)CI:Eu^(2+)(M=Sr,Ca)blue phosphors with highly efficient performance can be obtained.The crystal structure,...In this work,through a facile method of low-temperature(only 350℃)self-reduction,1D nano-sized M_(2)B_(5)O_(9)CI:Eu^(2+)(M=Sr,Ca)blue phosphors with highly efficient performance can be obtained.The crystal structure,morphology and photoluminescence(PL)properties including thermal stability of M_(2)B_(5)O_(9)CI:Eu^(2+)(M=Sr,Ca)phosphors were investigated.The M_(2)B_(5)O_(9)CI:Eu^(2+)(M=Sr,Ca)phosphors show broad band excitation spectra and narrow band emission spectra.The photoluminescence quantum yields(PLQY)of M_(2)B_(5)O_(9)CI:Eu^(2+)(M=Sr,Ca)are as high as 98%and 87.2%,respectively.Furthermore,the color purities of M_(2)B_(5)O_(9)CI:Eu^(2+)(M=Sr,Ca)can reach 99.1%and 93.2%,respectively,When heated up to 150℃,the emission intensities of M_(2)B_(5)O_(9)CI:Eu^(2+)(M=Sr,Ca)phosphors can still keep 72.7%and80.0%,respectively.Finally,the above-mentioned phosphors exhibit outstanding performance when manufacturing WLEDs.展开更多
基金supported by the National Natural Science Foundation of China(no.21935005)the National Key R&D Program of China(no.2020YFA0714601)Program for JLU Science and Technology Innovative Research Team(no.2019TD-33).
文摘The development and enrichment of organic materials with narrowband emission in longer wavelength regions beyond 515 nm still remains a great challenge.Herein,a synthetic methodology for narrowband emission materials has been proposed to functionalize multiple resonance(MR)skeletons and generate a universal building block,namely,the key intermediate DtCzB-Bpin,which can be utilized to construct multifarious thermally activated delayed fluorescence(TADF)materials with high color purity through a simple one-step Suzuki coupling reaction.Based on this unique synthetic strategy,a series of efficient narrowband green TADF emitters has been constructed by localized attachment of 1,3,5-triazine and pyrimidine derivatives-based acceptors onto B–N-containing MR frameworks with 1,3-bis(3,6-di-tertbutylcarbazol-9-yl)benzene(DtCz)as the ligand.The precise modulation of the acceptor is an intelligent approach to achieve bathochromic shift and narrowband emission simultaneously.The DtCzB-TPTRZbased organic light-emitting diode(OLED)exhibits pure green emission with Commission Internationale de L’Eclairage(CIE)coordinates of(0.23,0.68),a maximum external quantum efficiency(EQE)of 30.6%,and relatively low efficiency roll-off.
基金This study was supported by the National Key Research and Development Program of China(2019YFE0112200)the Science and Technology Development Fund of Macao SAR,China(0073/2019/AMJ)+2 种基金the National Natural Science Foundation of China(51873007,21835006,51961165102,and 52003022)the Fundamental Research Funds for the Central Universities of China(PT2021-02,buctrc202009)the high-performance computing platform of BUCT.
文摘Fluorescent carbon dots(CDs)have recently become a research hotspot in multidisciplinary fields owing to their distinctive advantages,including outstanding photoluminescence properties,high biocompatibility,low toxicity,and abundant raw materials.Among the promising CDs,narrow‐bandwidth emissive CDs with high color purity have emerged as a rising star in recent years because of their significant potential applications in bioimaging,information sensing,and photoelectric displays.In this review,the state-of-the-art advances of narrow-bandwidth emissive CDs are systematically summarized,and the factors influencing the emission bandwidth,preparation methods,and applications of narrow-bandwidth emissive CDs are described in detail.Besides,existing challenges and future perspectives for achieving high-performance narrow-bandwidth emissive CDs are also discussed.This overview paper is expected to generate more interest and promote the rapid development of this significant research area.
基金Project supported by the National Natural Science Foundation of China(22003035,22073061)the Natural Science Foundation of Shaanxi Province Department of Education(21JK0587)+2 种基金the Natural Science Foundation of Shaanxi Province(2020GY-237)the Foundation of Shaanxi Xueqian Normal University(2020YBKJ70)Innovation and Entrepreneurship Training Program for College Students in Shaanxi Province(S202014390037)。
文摘In this work,through a facile method of low-temperature(only 350℃)self-reduction,1D nano-sized M_(2)B_(5)O_(9)CI:Eu^(2+)(M=Sr,Ca)blue phosphors with highly efficient performance can be obtained.The crystal structure,morphology and photoluminescence(PL)properties including thermal stability of M_(2)B_(5)O_(9)CI:Eu^(2+)(M=Sr,Ca)phosphors were investigated.The M_(2)B_(5)O_(9)CI:Eu^(2+)(M=Sr,Ca)phosphors show broad band excitation spectra and narrow band emission spectra.The photoluminescence quantum yields(PLQY)of M_(2)B_(5)O_(9)CI:Eu^(2+)(M=Sr,Ca)are as high as 98%and 87.2%,respectively.Furthermore,the color purities of M_(2)B_(5)O_(9)CI:Eu^(2+)(M=Sr,Ca)can reach 99.1%and 93.2%,respectively,When heated up to 150℃,the emission intensities of M_(2)B_(5)O_(9)CI:Eu^(2+)(M=Sr,Ca)phosphors can still keep 72.7%and80.0%,respectively.Finally,the above-mentioned phosphors exhibit outstanding performance when manufacturing WLEDs.