High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillim...High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillimeter or micrometer level.This entails connecting hundreds or thousands of electrode wires on a limited surface.This study reported a class of flexible,ultrathin,highdensity electrocorticogram(ECoG)electrode arrays.The challenge of a large number of wiring arrangements was overcome by a laminated structure design and processing technology improvement.The flexible,ultrathin,high-density ECoG electrode array was conformably attached to the cortex for reliable,high spatial resolution electrophysiologic recordings.The minimum spacing between electrodes was 15μm,comparable to the diameter of a single neuron.Eight hundred electrodes were prepared with an electrode density of 4444 mm^(-2).In focal epilepsy surgery,the flexible,high-density,laminated ECoG electrode array with 36 electrodes was applied to collect epileptic spike waves inrabbits,improving the positioning accuracy of epilepsy lesions from the centimeter to the submillimeter level.The flexible,high-density,laminated ECoG electrode array has potential clinical applications in intractable epilepsy and other neurologic diseases requiring high-precision electroencephalogram acquisition.展开更多
Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and p...Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.展开更多
The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly co...The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly conductive polymer and a prospective pseudocapacitive materials for supercapacitors,yet the inferior cyclic stability and unpredictable polymerization patterns severely impede its real-world applicability.Here,for the first time,an innovative seed-induced in-situ polymerization assisted 3D printing strategy is proposed to fabricate PPy-reduced graphene oxide/poly(vinylidene difluoride-cohexafluoropropylene)(PVDF-HFP)(PPy-rGO/PH)electrodes with controllable polymerization behavior and exceptional areal mass loading.The preferred active sites uniformly pre-planted on the 3D-printed graphene substrates serve as reliable seeds to induce efficient polypyrrole deposition,achieving an impressive mass loading of 185.6 mg cm^(-2)(particularly 79.2 mg cm^(-2)for polypyrrole)and a superior areal capacitance of 25.2 F cm^(-2)at 2 mA cm^(-2)for a 12-layer electrode.In agreement with theses appealing features,an unprecedented areal energy density of 1.47 mW h cm^(-2)for a symmetrical device is registered,a rarely achieved value for other PPy/rGO-based supercapacitors.This work highlights a promising route to preparing high energy density energy storage modules for real-world applications.展开更多
High-density brines have been recognized beneficial for oilfield applications,with various key areas such as drilling,completion and formation evaluation.High-density brines can play a critical role in the development...High-density brines have been recognized beneficial for oilfield applications,with various key areas such as drilling,completion and formation evaluation.High-density brines can play a critical role in the development and production of oil and gas reservoirs during the primary,secondary,and tertiary recovery phases.High-density brines can enhance the mobility and recovery of the oil in the reservoir by controlling the density and viscosity.However,a less attention has been given to the application of high-density brine in the area of reservoir development.This review is shedding light on a concise overview of reservoir development stages in association with the recovery mechanisms.In addition,most possible applications of high-density fluids have also been reviewed in the field of the reservoir development.In summary,this review state that high-density brines can be used to stimulate reservoirs by hydraulic fracturing during the primary recovery phase.However,the risk of increased interfacial tension,which relies on the density difference of two fluids,can trap more residual oil relative to conventional water flooding.In addition,high-density brines are effective in decreasing the mobility ratio and facilitating favorable displacement during polymer flooding.However,they can be least effective in alkaline flooding due to the high IFT related to large density differences.Thus,it is suggested to consider the utilization of sustainable high-density brines by taking into account effective factors in petroleum engineering aspects such as stimulation,secondary recovery and polymer flooding.展开更多
The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formabilit...The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formability of Al-Cu-Li alloy is vital.A thorough comparison of the effects of cryo-deformation and ambient temperature large pre-deformation(LPD)on the creep ageing response in the 2195 alloy sheet at 160℃with different stresses has been made.The evolution of dislocations and precipitates during creep ageing of LPD alloys are revealed by X-ray diffraction and transmission electron microscopy.High-quality 2195 alloy sheet largely pre-deformed by 80%without edge-cracking is obtained by cryo-rolling at liquid nitrogen temperature,while severe edge-cracking occurs during room temperature rolling.The creep formability and strength of the 2195 alloy are both enhanced by introducing pre-existing dislocations with a density over 1.4×10^(15)m^(−2).At 160℃and 150 MPa,creep strain and creep-aged strength generally increases by 4−6 times and 30−50 MPa in the LPD sample,respectively,compared to conventional T3 alloy counterpart.The elongation of creep-aged LPD sample is low but remains relevant for application.The high-density dislocations,though existing in the form of dislocation tangles,promote the formation of refined T1 precipitates with a uniform dispersion.展开更多
The electrolysis of water powered by renewable energy sources offers a promising method of"green hydrogen"production,which is considered to be at the heart of future carbon-neutral energy systems.In the past...The electrolysis of water powered by renewable energy sources offers a promising method of"green hydrogen"production,which is considered to be at the heart of future carbon-neutral energy systems.In the past decades,researchers have reported a number of hydrogen evolution reaction(HER)electrocatalysts with activity comparable to that of commercial Pt/C,but most of them are tested within a small current density range,typically no more than 500 mA cm^(-2).To realize the industrial application of hydrogen production from water electrolysis,it is essential to develop high-efficiency HER electrocatalysts at high current density(HCD≥500 mA cm^(-2)).Nevertheless,it remains challenging and significant to rational design HCD electrocatalysts for HER.In this paper,the design strategy of HCD electrocatalysts is discussed,and some HCD electrocatalysts for HER are reviewed in seven categories(alloy,metal oxide,metal hydroxide,metal sulfide/selenide,metal nitride,metal phosphide and other derived electrocatalysts).At the end of this article,we also pro-pose some viewpoints and prospects for the future development and research directions of HCD electrocatalysts for HER.展开更多
The development of high-energy and long-lifespan NASICON-type cathode materials for sodium-ion batteries has always been a research hotspot but a daunting challenge.Although Na_(4)MnCr(PO_(4))_(3)has emerged as one of...The development of high-energy and long-lifespan NASICON-type cathode materials for sodium-ion batteries has always been a research hotspot but a daunting challenge.Although Na_(4)MnCr(PO_(4))_(3)has emerged as one of the most promising high-energy-density cathode materials owing to its three-electron reactions,it still suffers from serious structural distortion upon repetitive charge/discharge processes caused by the Jahn-Teller active Mn^(3+).Herein,the selective substitution of Cr by Zr in Na_(4)MnCr(PO_(4))_(3)was explored to enhance the structural stability,due to the pinning effect of Zr ions and the≈2.9-electron reactions,as-prepared Na_(3.9)MnCr_(0.9)Zr_(0.1)(PO_(4))_(3)/C delivers a high capacity retention of 85.94%over 500 cycles at 5 C and an ultrahigh capacity of 156.4 mAh g^(-1)at 0.1 C,enabling the stable energy output as high as 555.2 Wh kg^(-1).Moreover,during the whole charge/discharge process,a small volume change of only 6.7%was verified by in situ X-ray diffraction,and the reversible reactions of Cr^(3+)/Cr^(4+),Mn^(3+)/Mn^(4+),and Mn^(2+)/Mn^(3+)redox couples were identified via ex situ X-ray photoelectron spectroscopy analyses.Galvanostatic intermittent titration technique tests and density functional theory calculations further demonstrated the fast reaction kinetics of the Na_(3.9)MnCr_(0.9)Zr_(0.1)(PO_(4))_(3)/C electrode.This work offers new opportunities for designing high-energy and high-stability NASICON cathodes by ion doping.展开更多
Thermal energy storage(TES)solutions offer opportunities to reduce energy consumption,greenhouse gas emissions,and cost.Specifically,they can help reduce the peak load and address the intermittency of renewable energy...Thermal energy storage(TES)solutions offer opportunities to reduce energy consumption,greenhouse gas emissions,and cost.Specifically,they can help reduce the peak load and address the intermittency of renewable energy sources by time shifting the load,which are critical toward zero energy buildings.Thermochemical materials(TCMs)as a class of TES undergo a solid-gas reversible chemical reaction with water vapor to store and release energy with high storage capacities(600 kWh m^(-3))and negligible self-discharge that makes them uniquely suited as compact,stand-alone units for daily or seasonal storage.However,TCMs suffer from instabilities at the material(salt particles)and reactor level(packed beds of salt),resulting in poor multi-cycle efficiency and high-levelized cost of storage.In this study,a model is developed to predict the pulverization limit or Rcrit of various salt hydrates during thermal cycling.This is critical as it provides design rules to make mechanically stable TCM composites as well as enables the use of more energy-efficient manufacturing process(solid-state mixing)to make the composites.The model is experimentally validated on multiple TCM salt hydrates with different water content,and effect of Rcrit on hydration and dehydration kinetics is also investigated.展开更多
Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated us...Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes.展开更多
Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considere...Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.展开更多
The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was syn...The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance.展开更多
Na_(3)V_(2)(PO_(4))_(3)(NVP)is gifted with fast Na^(+)conductive NASICON structure.But it still suffers from low electronic conductivity and inadequate energy density.Herein,a high-entropy modification strategy is rea...Na_(3)V_(2)(PO_(4))_(3)(NVP)is gifted with fast Na^(+)conductive NASICON structure.But it still suffers from low electronic conductivity and inadequate energy density.Herein,a high-entropy modification strategy is realized by doping V^(3+)site with Ga^(3+)/Cr^(3+)/Al^(3+)/Fe^(3+)/In^(3+)simultaneously(i.e.Na_(3)V_(2-x)(GaCrAlFeIn)_x(PO_(4))_(3);x=0,0.04,0.06,and 0.08)to stimulate the V^(5+)■V^(2+)reversible multi-electron redox.Such configuration high-entropy can effectively suppress the structural collapse,enhance the redox reversibility in high working voltage(4.0 V),and optimize the electronic induced effect.The in-situ X-ray powder diffraction and in-situ electrochemical impedance spectroscopy tests efficaciously confirm the robust structu ral recovery and far lower polarization throughout an entire charge-discharge cycle during 1.6-4.3 V,respectively.Moreover,the density functional theory calculations clarify the stronger metallicity of high-entropy electrode than the bare that is derived from the more mobile free electrons surrounding the vicinity of Fermi level.By grace of high-entropy design and multi-electron transfer reactions,the optimal Na_(3)V_(1.7)(GaCrAlFeIn)_(0.06)(PO_(4))_(3)can exhibit perfect cycling/rate performances(90.97%@5000 cycles@30 C;112 mA h g^(-1)@10 C and 109 mA h g^(-1)@30 C,2.0-4.3 V).Furthermore,it can supply ultra-high185 mA h g^(-1)capacity with fa ntastic energy density(522 W h kg^(-1))in half-cells(1.4-4.3 V),and competitive capacity(121 mA h g^(-1))as well as energy density(402 W h kg^(-1))in full-cells(1.6-4.1 V),demonstrating enormous application potential for sodium-ion batteries.展开更多
Background:High stocking density(HSD)stress has detrimental effects on growth performance,intestinal barrier function,and intestinal microbiota in intensive animal production.Organic acids(OA)are widely used as feed a...Background:High stocking density(HSD)stress has detrimental effects on growth performance,intestinal barrier function,and intestinal microbiota in intensive animal production.Organic acids(OA)are widely used as feed addi-tives for their ability to improve growth performance and intestinal health in poultry.However,whether dietary OA can ameliorate HSD stress-induced impaired intestinal barrier in broilers remains elusive.In this study,a total of 528 one-day-old male Arbor Acres broilers were randomly allocated into 3 treatments with 12 replicates per treatment including 10 birds for normal stocking density and 17 birds for HSD.The dietary treatments were as follows:1)Normal stocking density+basal diet;2)HSD+basal diets;3)HSD+OA.Results:HSD stress can induce increased levels of serum corticosterone,lipopolysaccharides,interleukin-1β,tumor necrosis factor-α,and down-regulated mRNA expression of ZO-1,resulting in compromised growth performance of broilers(P<0.05).Dietary OA could significantly reduce levels of serum corticosterone,lipopolysaccharides,interleukin-1β,and tumor necrosis factor-α,which were accompanied by up-regulated interleukin-10,mRNA expres-sion of ZO-1,and growth performance(P<0.05).Moreover,OA could down-regulate the mRNA expression of TLR4 and MyD88 to inhibit the NF-κB signaling pathway(P<0.05).Additionally,HSD stress significantly decreased the abundance of Bacteroidetes and disturbed the balance of microbial ecosystems,whereas OA significantly increased the abundance of Bacteroidetes and restored the disordered gut microbiota by reducing competitive and exploita-tive interactions in microbial communities(P<0.05).Meanwhile,OA significantly increased the content of acetic and butyric acids,which showed significant correlations with intestinal inflammation indicators(P<0.05).Conclusions:Dietary OA ameliorated intestinal inflammation and growth performance of broilers through restor-ing the disordered gut microbial compositions and interactions induced by HSD and elevating short-chain fatty acid production to inhibit the TLR4/NF-κB signaling pathway.These findings demonstrated the critical role of intestinal microbiota in mediating the HSD-induced inflammatory responses,contributing to exploring nutritional strategies to alleviate HSD-induced stress in animals.展开更多
Lodging in maize leads to yield losses worldwide.In this study,we determined the effects of traditional and optimized nitrogen management strategies on culm morphological characteristics,culm mechanical strength,ligni...Lodging in maize leads to yield losses worldwide.In this study,we determined the effects of traditional and optimized nitrogen management strategies on culm morphological characteristics,culm mechanical strength,lignin content,root growth,lodging percentage and production in maize at a high plant density.We compared a traditional nitrogen(N)application rate of 300 kg ha–1(R)and an optimized N application rate of 225 kg ha^(–1)(O)under four N application modes:50%of N applied at sowing and 50%at the 10th-leaf stage(N1);100%of N applied at sowing(N2);40%of N applied at sowing,40%at the 10th-leaf stage and 20%at tasseling stage(N3);and 30%of N applied at sowing,30%at the 10th-leaf stage,20%at the tasseling stage,and 20%at the silking stage(N4).The optimized N rate(225 kg ha^(–1))significantly reduced internode lengths,plant height,ear height,center of gravity height and lodging percentage.The optimized N rate significantly increased internode diameters,filling degrees,culm mechanical strength,root growth and lignin content.The application of N in four split doses(N4)significantly improved culm morphological characteristics,culm mechanical strength,lignin content,and root growth,while it reduced internode lengths,plant height,ear height,center of gravity height and lodging percentage.Internode diameters,filling degrees,culm mechanical strength,lignin content,number and diameter of brace roots,root volume,root dry weight,bleeding safe and grain yield were significantly negatively correlated with plant height,ear height,center of gravity height,internode lengths and lodging percentage.In conclusion,treatment ON4 significantly reduced the lodging percentage by improving the culm morphological characteristics,culm mechanical strength,lignin content,and root growth,so it improved the production of the maize crop at a high plant density.展开更多
Extensive usage of highly conductive carbon materials with large specific surface area(e.g.,carbon nanotubes,CNTs)in lithium ion batteries(LIBs),especially as current collector of anodes,suffers from low initial coulo...Extensive usage of highly conductive carbon materials with large specific surface area(e.g.,carbon nanotubes,CNTs)in lithium ion batteries(LIBs),especially as current collector of anodes,suffers from low initial coulombic efficiency(ICE),large interfacial resistance,and severe embrittlement,as the large specific surface area often results in severe interfacial decomposition of the electrolyte and the formation of thick and fluffy solid electrolyte interphase(SEI)during cycling of LIBs.Herein,we demonstrate that when the CNT-based current collector and Na foil(which are being stacked intimately upon each other)are being placed in Na+-based organic electrolyte,local redox reaction between the Na foil and the electrolyte would occur spontaneously,generating a thin and homogeneous NaF-based passivating layer on the CNTs.More importantly,we found that owing to the weak solvation behaviors of Na+in the organic electrolyte,the resulting passivation layer,which is rich in NaF,is thin and dense;when used as the anode current collector in LIBs,the pre-existing passivating layer can function effectively in isolating the anode from the solvated Li+,thus suppressing the formation of bulky SEI and the destructive intercalation of solvated Li+.The relevant half-cell(graphite as anode)exhibits a high ICE of 92.1%;the relevant pouch cell with thus passivated CNT film as current collectors for both electrodes(LiCoO_(2)as cathode,graphite as anode)displays a high energy density of 255 Wh kg^(-1),spelling an increase of 50%compared with that using the conventional metal current collectors.展开更多
Fluorinated carbons(CFx)have been widely applied as lithium primary batteries due to their ultra-high energy density.It will be a great promise if CFx can be rechargeable.In this study,we rationally tune the C-F bond ...Fluorinated carbons(CFx)have been widely applied as lithium primary batteries due to their ultra-high energy density.It will be a great promise if CFx can be rechargeable.In this study,we rationally tune the C-F bond strength for the alkaline intercalated CFx via importing an electronegative weaker element K instead of Li.It forms a ternary phase K_(x)FC instead of two phases(LiF+C)in lithium-ion batteries.Meanwhile,we choose a large layer distance and more defects CFx,namely fluorinated soft carbon,to accommodate K.Thus,we enable CFx rechargeable as a potassium-ion battery cathode.In detail fluorinated soft carbon CF_(1.01) presents a reversible specific capacity of 339 mA h g^(-1)(797 Wh kg^(-1))in the 2nd cycle and maintains 330 mA h g^(-1)(726 Wh kg^(-1))in the 15th cycle.This study reveals the importance of tuning chemical bond stability using different alkaline ions to endow batteries with rechargeability.This work provides good references for focusing on developing reversible electrode materials from popular primary cell configurations.展开更多
Molecular crystals are complex systems exhibiting various crystal structures,and accurately modeling the crystal structures is essential for understanding their physical behaviors under high pressure.Here,we perform a...Molecular crystals are complex systems exhibiting various crystal structures,and accurately modeling the crystal structures is essential for understanding their physical behaviors under high pressure.Here,we perform an extensive structure search of ternary carbon-nitrogen-oxygen(CNO)compound under high pressure with the CALYPSO method and first principles calculations,and successfully identify three polymeric CNO compounds with Pbam,C2/m and I4m2symmetries under 100 GPa.More interestingly,these structures are also dynamically stable at ambient pressure,and are potential high energy density materials(HEDMs).The energy densities of Pbam,C2/m and I4m2 phases of CNO are about2.30 kJ/g,1.37 kJ/g and 2.70 kJ/g,respectively,with the decompositions of graphitic carbon and molecular carbon dioxide andα-N(molecular N_(2))at ambient pressure.The present results provide in-depth insights into the structural evolution and physical properties of CNO compounds under high pressures,which offer crucial insights for designs and syntheses of novel HEDMs.展开更多
Soybean yield has traditionally been increased through high planting density,but investigating plant height and petiole traits to select for compact architecture,lodging resistance,and high yield varieties is an under...Soybean yield has traditionally been increased through high planting density,but investigating plant height and petiole traits to select for compact architecture,lodging resistance,and high yield varieties is an underexplored option for further improving yield.We compared the relationships between yield-related traits,lodging resistance,and petioleassociated phenotypes in the short petiole germplasm M657 with three control accessions during 2017–2018 in four locations in the Huang–Huai region,China.The results showed that M657 exhibited stable and high tolerance to high planting density and resistance to lodging,especially at the highest density(8×105 plants ha–1).The regression analysis indicated that a shorter petiole length was significantly associated with increased lodging resistance.The yield analysis showed that M657 achieved higher yields under higher densities,especially in the northern part of the Huang–Huai region.Among the varieties,there were markedly different responses to intra-and inter-row spacing designs with respect to both lodging and yield that were related to location and density.Lodging was positively correlated with planting density,plant height,petiole length,and number of effective branches,but negatively correlated with stem diameter,seed number per plant,and seed weight per plant.The yield of soybean was increased by appropriately increasing the planting density on the basis of the current soybean varieties in the Huang–Huai region.This study provides a valuable new germplasm resource for the introgression of compact architecture traits that are amenable to providing a high yield in high density planting systems,and it establishes a high-yield model of soybean in the Huang–Huai region.展开更多
The solid-state electrolyte in a solid-state battery acts as an electrons'barrier and an ions'bridge between the two electrodes.As solid-state electrolyte does not store the mobile ions,it is necessary to achi...The solid-state electrolyte in a solid-state battery acts as an electrons'barrier and an ions'bridge between the two electrodes.As solid-state electrolyte does not store the mobile ions,it is necessary to achieve a thin solid-state electrolyte to reduce the internal resistance and enhance the energy density.In this work,a thin NASICON solid-state electrolyte,with a stoichiometry of Na_(3)Zr_(2)Si_(2)PO_(12),is fabricated by the tape-casting method and its thickness can be easily controlled by the gap between substrate and scraper.The areal-specific resistance and the flexural strength increase with the electrolyte thickness.A solid-state sodium metal battery with 86 pm thick Na_(3)Zr_(2)Si_(2)PO_(12)exhibits a reversible specific capacity of 73-78 mAh g^(-1)with a redox potential of 3.4 V at 0.2 C.This work presents the importance of electrolyte thickness to reduce internal resistance and achieve a high energy density for sodium batteries.展开更多
The hydrogen-iron(HyFe)flow cell has great potential for long-duration energy storage by capitalizing on the advantages of both electrolyzers and flow batteries.However,its operation at high current density(high power...The hydrogen-iron(HyFe)flow cell has great potential for long-duration energy storage by capitalizing on the advantages of both electrolyzers and flow batteries.However,its operation at high current density(high power)and over continuous cycling testing has yet to be demonstrated.In this paper,we discuss our design and demonstration of a water management strategy that supports high current and long cycling performance of a HyFe flow cell.Water molecules associated with the movement of protons from the iron electrode to the hydrogen electrode are sufficient to hydrate the membrane and electrode at a low current density of 100 mA cm^(-2)during the charge process.At higher charge current density,more aggressive measures must be taken to counter back-diffusion driven by the acid concentration gradient between the iron and hydrogen electrodes.Our water management approach is based on water vapor feeding in the hydrogen electrode,and water evaporation in the iron electrode,thus enabling the high current density operation of 300 mA cm^(-2).展开更多
基金support of the National Natural Science Foundation of China(Nos.U20A6001,12002190,11972207,and 11921002)the Fundamental Research Funds for the Central Universities,China(No.SWUKQ22029)the Chongqing Natural Science Foundation of China(No.CSTB2022NSCQ-MSX1635).
文摘High spatiotemporal resolution brain electrical signals are critical for basic neuroscience research and high-precision focus diagnostic localization,as the spatial scale of some pathologic signals is at the submillimeter or micrometer level.This entails connecting hundreds or thousands of electrode wires on a limited surface.This study reported a class of flexible,ultrathin,highdensity electrocorticogram(ECoG)electrode arrays.The challenge of a large number of wiring arrangements was overcome by a laminated structure design and processing technology improvement.The flexible,ultrathin,high-density ECoG electrode array was conformably attached to the cortex for reliable,high spatial resolution electrophysiologic recordings.The minimum spacing between electrodes was 15μm,comparable to the diameter of a single neuron.Eight hundred electrodes were prepared with an electrode density of 4444 mm^(-2).In focal epilepsy surgery,the flexible,high-density,laminated ECoG electrode array with 36 electrodes was applied to collect epileptic spike waves inrabbits,improving the positioning accuracy of epilepsy lesions from the centimeter to the submillimeter level.The flexible,high-density,laminated ECoG electrode array has potential clinical applications in intractable epilepsy and other neurologic diseases requiring high-precision electroencephalogram acquisition.
基金Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2020A1515110762Research Grants Council of the Hong Kong Special Administrative Region,China,Grant/Award Number:R6005‐20Shenzhen Key Laboratory of Advanced Energy Storage,Grant/Award Number:ZDSYS20220401141000001。
文摘Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.
基金financially supported by the National Natural Science Foundation of China(No.51933007,No.52373047,No.52302106)the Sichuan Youth Science and Technology Innovation Research Team Project(No.2022JDTD0012)+2 种基金the Program for Featured Directions of Engineering Multidisciplines of Sichuan University(No.2020SCUNG203)the Natural Science Foundation of Sichuan Province(No.2023NSFSC0418)the Program for State Key Laboratory of Polymer Materials Engineering(No.sklpme2022-3-10)。
文摘The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly conductive polymer and a prospective pseudocapacitive materials for supercapacitors,yet the inferior cyclic stability and unpredictable polymerization patterns severely impede its real-world applicability.Here,for the first time,an innovative seed-induced in-situ polymerization assisted 3D printing strategy is proposed to fabricate PPy-reduced graphene oxide/poly(vinylidene difluoride-cohexafluoropropylene)(PVDF-HFP)(PPy-rGO/PH)electrodes with controllable polymerization behavior and exceptional areal mass loading.The preferred active sites uniformly pre-planted on the 3D-printed graphene substrates serve as reliable seeds to induce efficient polypyrrole deposition,achieving an impressive mass loading of 185.6 mg cm^(-2)(particularly 79.2 mg cm^(-2)for polypyrrole)and a superior areal capacitance of 25.2 F cm^(-2)at 2 mA cm^(-2)for a 12-layer electrode.In agreement with theses appealing features,an unprecedented areal energy density of 1.47 mW h cm^(-2)for a symmetrical device is registered,a rarely achieved value for other PPy/rGO-based supercapacitors.This work highlights a promising route to preparing high energy density energy storage modules for real-world applications.
基金supported by the King Fahd University of Pe-troleum and Minerals[Grant No.KU201004]Khalifa University[Grant No.KU-KFUPM-2020-28]H2FC2303 DSR Project of KFUPM.
文摘High-density brines have been recognized beneficial for oilfield applications,with various key areas such as drilling,completion and formation evaluation.High-density brines can play a critical role in the development and production of oil and gas reservoirs during the primary,secondary,and tertiary recovery phases.High-density brines can enhance the mobility and recovery of the oil in the reservoir by controlling the density and viscosity.However,a less attention has been given to the application of high-density brine in the area of reservoir development.This review is shedding light on a concise overview of reservoir development stages in association with the recovery mechanisms.In addition,most possible applications of high-density fluids have also been reviewed in the field of the reservoir development.In summary,this review state that high-density brines can be used to stimulate reservoirs by hydraulic fracturing during the primary recovery phase.However,the risk of increased interfacial tension,which relies on the density difference of two fluids,can trap more residual oil relative to conventional water flooding.In addition,high-density brines are effective in decreasing the mobility ratio and facilitating favorable displacement during polymer flooding.However,they can be least effective in alkaline flooding due to the high IFT related to large density differences.Thus,it is suggested to consider the utilization of sustainable high-density brines by taking into account effective factors in petroleum engineering aspects such as stimulation,secondary recovery and polymer flooding.
基金Projects(52274404,52305441,U22A20190)supported by the National Natural Science Foundation of ChinaProjects(2022JJ20065,2023JJ40739)supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(2022RC1001)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(2023ZZTS0972)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2021YFB3400903)supported by the National Key R&D Program of China。
文摘The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formability of Al-Cu-Li alloy is vital.A thorough comparison of the effects of cryo-deformation and ambient temperature large pre-deformation(LPD)on the creep ageing response in the 2195 alloy sheet at 160℃with different stresses has been made.The evolution of dislocations and precipitates during creep ageing of LPD alloys are revealed by X-ray diffraction and transmission electron microscopy.High-quality 2195 alloy sheet largely pre-deformed by 80%without edge-cracking is obtained by cryo-rolling at liquid nitrogen temperature,while severe edge-cracking occurs during room temperature rolling.The creep formability and strength of the 2195 alloy are both enhanced by introducing pre-existing dislocations with a density over 1.4×10^(15)m^(−2).At 160℃and 150 MPa,creep strain and creep-aged strength generally increases by 4−6 times and 30−50 MPa in the LPD sample,respectively,compared to conventional T3 alloy counterpart.The elongation of creep-aged LPD sample is low but remains relevant for application.The high-density dislocations,though existing in the form of dislocation tangles,promote the formation of refined T1 precipitates with a uniform dispersion.
文摘The electrolysis of water powered by renewable energy sources offers a promising method of"green hydrogen"production,which is considered to be at the heart of future carbon-neutral energy systems.In the past decades,researchers have reported a number of hydrogen evolution reaction(HER)electrocatalysts with activity comparable to that of commercial Pt/C,but most of them are tested within a small current density range,typically no more than 500 mA cm^(-2).To realize the industrial application of hydrogen production from water electrolysis,it is essential to develop high-efficiency HER electrocatalysts at high current density(HCD≥500 mA cm^(-2)).Nevertheless,it remains challenging and significant to rational design HCD electrocatalysts for HER.In this paper,the design strategy of HCD electrocatalysts is discussed,and some HCD electrocatalysts for HER are reviewed in seven categories(alloy,metal oxide,metal hydroxide,metal sulfide/selenide,metal nitride,metal phosphide and other derived electrocatalysts).At the end of this article,we also pro-pose some viewpoints and prospects for the future development and research directions of HCD electrocatalysts for HER.
基金Financial support from the National Natural Science Foundation of China(22075016 and 22103057)Fundamental Research Funds for the Central Universities(FRF-TP-20-020A3 and QNXM20220060)+1 种基金Interdisciplinary Research Project for Young Teachers of USTB(FRF-IDRY-21-011)111 Project(B170003 and B12015)
文摘The development of high-energy and long-lifespan NASICON-type cathode materials for sodium-ion batteries has always been a research hotspot but a daunting challenge.Although Na_(4)MnCr(PO_(4))_(3)has emerged as one of the most promising high-energy-density cathode materials owing to its three-electron reactions,it still suffers from serious structural distortion upon repetitive charge/discharge processes caused by the Jahn-Teller active Mn^(3+).Herein,the selective substitution of Cr by Zr in Na_(4)MnCr(PO_(4))_(3)was explored to enhance the structural stability,due to the pinning effect of Zr ions and the≈2.9-electron reactions,as-prepared Na_(3.9)MnCr_(0.9)Zr_(0.1)(PO_(4))_(3)/C delivers a high capacity retention of 85.94%over 500 cycles at 5 C and an ultrahigh capacity of 156.4 mAh g^(-1)at 0.1 C,enabling the stable energy output as high as 555.2 Wh kg^(-1).Moreover,during the whole charge/discharge process,a small volume change of only 6.7%was verified by in situ X-ray diffraction,and the reversible reactions of Cr^(3+)/Cr^(4+),Mn^(3+)/Mn^(4+),and Mn^(2+)/Mn^(3+)redox couples were identified via ex situ X-ray photoelectron spectroscopy analyses.Galvanostatic intermittent titration technique tests and density functional theory calculations further demonstrated the fast reaction kinetics of the Na_(3.9)MnCr_(0.9)Zr_(0.1)(PO_(4))_(3)/C electrode.This work offers new opportunities for designing high-energy and high-stability NASICON cathodes by ion doping.
基金supported by the Energy Efficiency and Renewable Energy,Building Technologies Program,of the US Department of Energy,under contract no.DE-AC02-05CH11231the support on the DSC/TGA 3+supported by the Office of Science,Office of Basic Energy Sciences,of the U.S.Department of Energy under Contract No.DE-AC02-05CH11231
文摘Thermal energy storage(TES)solutions offer opportunities to reduce energy consumption,greenhouse gas emissions,and cost.Specifically,they can help reduce the peak load and address the intermittency of renewable energy sources by time shifting the load,which are critical toward zero energy buildings.Thermochemical materials(TCMs)as a class of TES undergo a solid-gas reversible chemical reaction with water vapor to store and release energy with high storage capacities(600 kWh m^(-3))and negligible self-discharge that makes them uniquely suited as compact,stand-alone units for daily or seasonal storage.However,TCMs suffer from instabilities at the material(salt particles)and reactor level(packed beds of salt),resulting in poor multi-cycle efficiency and high-levelized cost of storage.In this study,a model is developed to predict the pulverization limit or Rcrit of various salt hydrates during thermal cycling.This is critical as it provides design rules to make mechanically stable TCM composites as well as enables the use of more energy-efficient manufacturing process(solid-state mixing)to make the composites.The model is experimentally validated on multiple TCM salt hydrates with different water content,and effect of Rcrit on hydration and dehydration kinetics is also investigated.
基金supported by the National Key Research and Development Program of China,China(2019YFA0705102)the National Natural Science Foundation of China,China(22179144,22005332)。
文摘Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes.
文摘Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.
文摘The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance.
基金financially supported by the National Key Research and Development Program of China (2022YFA1505700,2019YFA0210403)the National Natural Science Foundation of China (52102216)+1 种基金the Natural Science Foundation of Fujian Province (2022J01625,2022-S-002)the Innovation Training Program for College Students (202310394020,cxxl-2023097,cxxl-2024131,cxxl-2024136)。
文摘Na_(3)V_(2)(PO_(4))_(3)(NVP)is gifted with fast Na^(+)conductive NASICON structure.But it still suffers from low electronic conductivity and inadequate energy density.Herein,a high-entropy modification strategy is realized by doping V^(3+)site with Ga^(3+)/Cr^(3+)/Al^(3+)/Fe^(3+)/In^(3+)simultaneously(i.e.Na_(3)V_(2-x)(GaCrAlFeIn)_x(PO_(4))_(3);x=0,0.04,0.06,and 0.08)to stimulate the V^(5+)■V^(2+)reversible multi-electron redox.Such configuration high-entropy can effectively suppress the structural collapse,enhance the redox reversibility in high working voltage(4.0 V),and optimize the electronic induced effect.The in-situ X-ray powder diffraction and in-situ electrochemical impedance spectroscopy tests efficaciously confirm the robust structu ral recovery and far lower polarization throughout an entire charge-discharge cycle during 1.6-4.3 V,respectively.Moreover,the density functional theory calculations clarify the stronger metallicity of high-entropy electrode than the bare that is derived from the more mobile free electrons surrounding the vicinity of Fermi level.By grace of high-entropy design and multi-electron transfer reactions,the optimal Na_(3)V_(1.7)(GaCrAlFeIn)_(0.06)(PO_(4))_(3)can exhibit perfect cycling/rate performances(90.97%@5000 cycles@30 C;112 mA h g^(-1)@10 C and 109 mA h g^(-1)@30 C,2.0-4.3 V).Furthermore,it can supply ultra-high185 mA h g^(-1)capacity with fa ntastic energy density(522 W h kg^(-1))in half-cells(1.4-4.3 V),and competitive capacity(121 mA h g^(-1))as well as energy density(402 W h kg^(-1))in full-cells(1.6-4.1 V),demonstrating enormous application potential for sodium-ion batteries.
基金supported by the Agricultural Science and Technology Innovation Program(ASTIP)of the Chinese Academy of Agricultural Sciences,and Trouw Nutrition Research&Development Centers.
文摘Background:High stocking density(HSD)stress has detrimental effects on growth performance,intestinal barrier function,and intestinal microbiota in intensive animal production.Organic acids(OA)are widely used as feed addi-tives for their ability to improve growth performance and intestinal health in poultry.However,whether dietary OA can ameliorate HSD stress-induced impaired intestinal barrier in broilers remains elusive.In this study,a total of 528 one-day-old male Arbor Acres broilers were randomly allocated into 3 treatments with 12 replicates per treatment including 10 birds for normal stocking density and 17 birds for HSD.The dietary treatments were as follows:1)Normal stocking density+basal diet;2)HSD+basal diets;3)HSD+OA.Results:HSD stress can induce increased levels of serum corticosterone,lipopolysaccharides,interleukin-1β,tumor necrosis factor-α,and down-regulated mRNA expression of ZO-1,resulting in compromised growth performance of broilers(P<0.05).Dietary OA could significantly reduce levels of serum corticosterone,lipopolysaccharides,interleukin-1β,and tumor necrosis factor-α,which were accompanied by up-regulated interleukin-10,mRNA expres-sion of ZO-1,and growth performance(P<0.05).Moreover,OA could down-regulate the mRNA expression of TLR4 and MyD88 to inhibit the NF-κB signaling pathway(P<0.05).Additionally,HSD stress significantly decreased the abundance of Bacteroidetes and disturbed the balance of microbial ecosystems,whereas OA significantly increased the abundance of Bacteroidetes and restored the disordered gut microbiota by reducing competitive and exploita-tive interactions in microbial communities(P<0.05).Meanwhile,OA significantly increased the content of acetic and butyric acids,which showed significant correlations with intestinal inflammation indicators(P<0.05).Conclusions:Dietary OA ameliorated intestinal inflammation and growth performance of broilers through restor-ing the disordered gut microbial compositions and interactions induced by HSD and elevating short-chain fatty acid production to inhibit the TLR4/NF-κB signaling pathway.These findings demonstrated the critical role of intestinal microbiota in mediating the HSD-induced inflammatory responses,contributing to exploring nutritional strategies to alleviate HSD-induced stress in animals.
基金supported by projects funded by the China Postdoctoral Science Foundation(2019M663837 and 2021M701521)the National High-Tech Research and Development Programs of China(2013AA102902)the special fund for Agro-scientific Research in the Public Interest,China(201303104)。
文摘Lodging in maize leads to yield losses worldwide.In this study,we determined the effects of traditional and optimized nitrogen management strategies on culm morphological characteristics,culm mechanical strength,lignin content,root growth,lodging percentage and production in maize at a high plant density.We compared a traditional nitrogen(N)application rate of 300 kg ha–1(R)and an optimized N application rate of 225 kg ha^(–1)(O)under four N application modes:50%of N applied at sowing and 50%at the 10th-leaf stage(N1);100%of N applied at sowing(N2);40%of N applied at sowing,40%at the 10th-leaf stage and 20%at tasseling stage(N3);and 30%of N applied at sowing,30%at the 10th-leaf stage,20%at the tasseling stage,and 20%at the silking stage(N4).The optimized N rate(225 kg ha^(–1))significantly reduced internode lengths,plant height,ear height,center of gravity height and lodging percentage.The optimized N rate significantly increased internode diameters,filling degrees,culm mechanical strength,root growth and lignin content.The application of N in four split doses(N4)significantly improved culm morphological characteristics,culm mechanical strength,lignin content,and root growth,while it reduced internode lengths,plant height,ear height,center of gravity height and lodging percentage.Internode diameters,filling degrees,culm mechanical strength,lignin content,number and diameter of brace roots,root volume,root dry weight,bleeding safe and grain yield were significantly negatively correlated with plant height,ear height,center of gravity height,internode lengths and lodging percentage.In conclusion,treatment ON4 significantly reduced the lodging percentage by improving the culm morphological characteristics,culm mechanical strength,lignin content,and root growth,so it improved the production of the maize crop at a high plant density.
基金financially supported by the National Key Research and Development Program of China(2022YFB4002103)the National Natural Science Foundation of China(22279107)。
文摘Extensive usage of highly conductive carbon materials with large specific surface area(e.g.,carbon nanotubes,CNTs)in lithium ion batteries(LIBs),especially as current collector of anodes,suffers from low initial coulombic efficiency(ICE),large interfacial resistance,and severe embrittlement,as the large specific surface area often results in severe interfacial decomposition of the electrolyte and the formation of thick and fluffy solid electrolyte interphase(SEI)during cycling of LIBs.Herein,we demonstrate that when the CNT-based current collector and Na foil(which are being stacked intimately upon each other)are being placed in Na+-based organic electrolyte,local redox reaction between the Na foil and the electrolyte would occur spontaneously,generating a thin and homogeneous NaF-based passivating layer on the CNTs.More importantly,we found that owing to the weak solvation behaviors of Na+in the organic electrolyte,the resulting passivation layer,which is rich in NaF,is thin and dense;when used as the anode current collector in LIBs,the pre-existing passivating layer can function effectively in isolating the anode from the solvated Li+,thus suppressing the formation of bulky SEI and the destructive intercalation of solvated Li+.The relevant half-cell(graphite as anode)exhibits a high ICE of 92.1%;the relevant pouch cell with thus passivated CNT film as current collectors for both electrodes(LiCoO_(2)as cathode,graphite as anode)displays a high energy density of 255 Wh kg^(-1),spelling an increase of 50%compared with that using the conventional metal current collectors.
基金supported by the National Natural Science Foundation of China(52072061)21C Innovation Laboratory,Contemporary Amperex Technology Ltd.by project No.21C–OP–202103。
文摘Fluorinated carbons(CFx)have been widely applied as lithium primary batteries due to their ultra-high energy density.It will be a great promise if CFx can be rechargeable.In this study,we rationally tune the C-F bond strength for the alkaline intercalated CFx via importing an electronegative weaker element K instead of Li.It forms a ternary phase K_(x)FC instead of two phases(LiF+C)in lithium-ion batteries.Meanwhile,we choose a large layer distance and more defects CFx,namely fluorinated soft carbon,to accommodate K.Thus,we enable CFx rechargeable as a potassium-ion battery cathode.In detail fluorinated soft carbon CF_(1.01) presents a reversible specific capacity of 339 mA h g^(-1)(797 Wh kg^(-1))in the 2nd cycle and maintains 330 mA h g^(-1)(726 Wh kg^(-1))in the 15th cycle.This study reveals the importance of tuning chemical bond stability using different alkaline ions to endow batteries with rechargeability.This work provides good references for focusing on developing reversible electrode materials from popular primary cell configurations.
基金the National Natural Science Foundation of China(Grant Nos.12174352 and 12111530103)the Fundamental Research Funds for the Central UniversitiesChina University of Geosciences(Wuhan)(Grant No.G1323523065)。
文摘Molecular crystals are complex systems exhibiting various crystal structures,and accurately modeling the crystal structures is essential for understanding their physical behaviors under high pressure.Here,we perform an extensive structure search of ternary carbon-nitrogen-oxygen(CNO)compound under high pressure with the CALYPSO method and first principles calculations,and successfully identify three polymeric CNO compounds with Pbam,C2/m and I4m2symmetries under 100 GPa.More interestingly,these structures are also dynamically stable at ambient pressure,and are potential high energy density materials(HEDMs).The energy densities of Pbam,C2/m and I4m2 phases of CNO are about2.30 kJ/g,1.37 kJ/g and 2.70 kJ/g,respectively,with the decompositions of graphitic carbon and molecular carbon dioxide andα-N(molecular N_(2))at ambient pressure.The present results provide in-depth insights into the structural evolution and physical properties of CNO compounds under high pressures,which offer crucial insights for designs and syntheses of novel HEDMs.
基金funded by the National Natural Science Foundation of China (31271753)the Central Publicinterest Scientific Institution Basal Research Fund, China (S2021ZD02)the Agricultural Science and Technology Innovation Program (ASTIP) of the Chinese Academy of Agricultural Sciences (CAAS-ZDRW202003-1)。
文摘Soybean yield has traditionally been increased through high planting density,but investigating plant height and petiole traits to select for compact architecture,lodging resistance,and high yield varieties is an underexplored option for further improving yield.We compared the relationships between yield-related traits,lodging resistance,and petioleassociated phenotypes in the short petiole germplasm M657 with three control accessions during 2017–2018 in four locations in the Huang–Huai region,China.The results showed that M657 exhibited stable and high tolerance to high planting density and resistance to lodging,especially at the highest density(8×105 plants ha–1).The regression analysis indicated that a shorter petiole length was significantly associated with increased lodging resistance.The yield analysis showed that M657 achieved higher yields under higher densities,especially in the northern part of the Huang–Huai region.Among the varieties,there were markedly different responses to intra-and inter-row spacing designs with respect to both lodging and yield that were related to location and density.Lodging was positively correlated with planting density,plant height,petiole length,and number of effective branches,but negatively correlated with stem diameter,seed number per plant,and seed weight per plant.The yield of soybean was increased by appropriately increasing the planting density on the basis of the current soybean varieties in the Huang–Huai region.This study provides a valuable new germplasm resource for the introgression of compact architecture traits that are amenable to providing a high yield in high density planting systems,and it establishes a high-yield model of soybean in the Huang–Huai region.
基金Agency for Science,Technology and Research for its funding(U21-M1-019AR).
文摘The solid-state electrolyte in a solid-state battery acts as an electrons'barrier and an ions'bridge between the two electrodes.As solid-state electrolyte does not store the mobile ions,it is necessary to achieve a thin solid-state electrolyte to reduce the internal resistance and enhance the energy density.In this work,a thin NASICON solid-state electrolyte,with a stoichiometry of Na_(3)Zr_(2)Si_(2)PO_(12),is fabricated by the tape-casting method and its thickness can be easily controlled by the gap between substrate and scraper.The areal-specific resistance and the flexural strength increase with the electrolyte thickness.A solid-state sodium metal battery with 86 pm thick Na_(3)Zr_(2)Si_(2)PO_(12)exhibits a reversible specific capacity of 73-78 mAh g^(-1)with a redox potential of 3.4 V at 0.2 C.This work presents the importance of electrolyte thickness to reduce internal resistance and achieve a high energy density for sodium batteries.
基金support primarily from the U.S.Department of Energy Advanced Research Projects Agency-Energy 2015 OPEN program under Contract No.67995support by Energy Storage Materials Initiative(ESMI),which is a Laboratory Directed Research and Development Project at Pacific Northwest National Laboratory(PNNL).PNNL is a multiprogram national laboratory operated for the U.S.Department of Energy(DOE)by Battelle Memorial Institute under Contract no.DE-AC05-76RL01830.
文摘The hydrogen-iron(HyFe)flow cell has great potential for long-duration energy storage by capitalizing on the advantages of both electrolyzers and flow batteries.However,its operation at high current density(high power)and over continuous cycling testing has yet to be demonstrated.In this paper,we discuss our design and demonstration of a water management strategy that supports high current and long cycling performance of a HyFe flow cell.Water molecules associated with the movement of protons from the iron electrode to the hydrogen electrode are sufficient to hydrate the membrane and electrode at a low current density of 100 mA cm^(-2)during the charge process.At higher charge current density,more aggressive measures must be taken to counter back-diffusion driven by the acid concentration gradient between the iron and hydrogen electrodes.Our water management approach is based on water vapor feeding in the hydrogen electrode,and water evaporation in the iron electrode,thus enabling the high current density operation of 300 mA cm^(-2).