High-entropy materials(HEMs)have better mechanical,thermal,and electrical properties than traditional materials due to their special"high entropy effect".They can also adjust the performance of high entropy ...High-entropy materials(HEMs)have better mechanical,thermal,and electrical properties than traditional materials due to their special"high entropy effect".They can also adjust the performance of high entropy ceramics by adjusting the proportion of raw materials,and have broad application prospects in many fields.This article provides a review of the high entropy effect,preparation methods,and main applications of high entropy ceramic materials,especially exploring relevant research on high entropy perovskite ceramics.It is expected to provide reference for the promotion of scientific research and the development of further large-scale applications of high-entropy ceramic materials.展开更多
In response to the development of the concepts of“carbon neutrality”and“carbon peak”,it is critical to developing materials with high near-infrared(NIR)solar reflectivity and high emissivity in the atmospheric tra...In response to the development of the concepts of“carbon neutrality”and“carbon peak”,it is critical to developing materials with high near-infrared(NIR)solar reflectivity and high emissivity in the atmospheric transparency window(ATW;8–13μm)to advance zero energy consumption radiative cooling technology.To regulate emission and reflection properties,a series of high-entropy rare earth stannate ceramics(HE-RE_(2)Sn_(2)O_(7):(Y_(0.2)La_(0.2)Nd_(0.2)Eu_(0.2)Gd_(0.2))_(2)Sn_(2)O_(7),(Y_(0.2)La_(0.2)Sm_(0.2)Eu_(0.2)Lu_(0.2))_(2)Sn_(2)O_(7),and(Y_(0.2)La_(0.2)Gd_(0.2)Yb_(0.2)Lu_(0.2))_(2)Sn_(2)O_(7))with severe lattice distortion were prepared using a solid phase reaction followed by a pressureless sintering method for the first time.Lattice distortion is accomplished by introducing rare earth elements with different cation radii and mass.The as-synthesized HE-RE_(2)Sn_(2)O_(7)ceramics possess high ATW emissivity(91.38%–95.41%),high NIR solar reflectivity(92.74%–97.62%),low thermal conductivity(1.080–1.619 W·m^(−1)·K^(−1)),and excellent chemical stability.On the one hand,the lattice distortion intensifies the asymmetry of the structural unit to cause a notable alteration in the electric dipole moment,ultimately enlarging the ATW emissivity.On the other hand,by selecting difficult excitation elements,HE-RE_(2)Sn_(2)O_(7),which has a wide band gap(Eg),exhibits high NIR solar reflectivity.Hence,the multi-component design can effectively enhance radiative cooling ability of HE-RE_(2)Sn_(2)O_(7)and provide a novel strategy for developing radiative cooling materials.展开更多
Antibacterial ceramic was prepared by doping enamel slurry with composite phosphate inorganic antibacterial materials containing rare earth (inorganic antibacterial additives), and then the mechanisms for activating w...Antibacterial ceramic was prepared by doping enamel slurry with composite phosphate inorganic antibacterial materials containing rare earth (inorganic antibacterial additives), and then the mechanisms for activating water and improving seed germinative property were tested by nuclear magnetic resonance (NMR) and the method of testing oxygen dissolved in activated water. Results show that the half peak width of (()^(17)O-NMR) for tap water activated by the antibacterial ceramic drops from 115.36 to 99.15 Hz, and oxygen concentrations of activated water increase by 20%, germinate rate of horsebean and earthnut seeds increases by 12.5% and 7.5%, respectively. Therefore antibacterial ceramic doped enamel slurry with inorganic antibacterial additives containing rare earth can reduce the volume of clusters of water molecules, improve activation of tap water, and promote plant seeds germinate.展开更多
Through the addition of Y, Sm and Ce in Al2O3/(W, Ti)C ceramic matrix, it was found that the amount and kind of the added rare earth elements have some different influences on the mechanical properties and wear resist...Through the addition of Y, Sm and Ce in Al2O3/(W, Ti)C ceramic matrix, it was found that the amount and kind of the added rare earth elements have some different influences on the mechanical properties and wear resistance of the composite. Under the present experimental conditions, the flank wear curves of the selected ceramic tool materials when machining the hardened tool steel obeyed the wear law well. But wear resistance of different ceramic materials varied with each other. Wear resistance of rare earth ceramic tool materials was higher than that of the corresponding materials without rare earth. Wear modes of the developed Al2O3/(W, Ti)C series rare earth ceramic tool materials were mainly flank wear and accompanied with slight crater wear.展开更多
Rare earth composite ceramic materials (RE/CM) were prepared by the method of firing the mixtures of the rare earth elements, polar crystal mineral materials and clays. The effects of processing method on the reducing...Rare earth composite ceramic materials (RE/CM) were prepared by the method of firing the mixtures of the rare earth elements, polar crystal mineral materials and clays. The effects of processing method on the reducing exhaust emissions were studied. The results show that after dealt with the ceramic balls, the surface tension of gasoline, and the CO concentration among exhaust emissions during combustion, decrease by 2.7% and 11.5%, respectively; however the temperature of the inner flue increases by 4.8%.展开更多
Development and application of new ceramic die materials is one of the important topics in the field of die research. The composition, processing technology, mechanical property and engineering performance of the cera...Development and application of new ceramic die materials is one of the important topics in the field of die research. The composition, processing technology, mechanical property and engineering performance of the ceramic materials such as cermet, ZTA, TZP, TZP/Al2O3, TZP/TiC/Al2O3, PSZ and Sialon, etc., with rare earth yttrium, lanthanum and cerium, and so on working as additives, were investigated and analyzed in the present study. Problems existed in the research and application of rare earth ceramic die materials were discussed. Rare earth additives can effectively improve the mechanical property and engineering performance of ceramic die materials. Thus, it will have further perspectives of wider application. More attention should be paid in the future to the toughening and strengthening of the ceramic die materials, the adding forms and kinds of rare earth elements and acting mechanisms of rare earth additives in ceramic die materials.展开更多
Cordierite-based glass-ceramics with non-stoichiometric composition doped with rare earth oxide (REO_2) and heavy metal oxide (M_2O_3) respectively were fabricated from glass powders. After sintering and crystallizati...Cordierite-based glass-ceramics with non-stoichiometric composition doped with rare earth oxide (REO_2) and heavy metal oxide (M_2O_3) respectively were fabricated from glass powders. After sintering and crystallization heat treatment, various physical properties, including compact density and apparent porosity, were examined to evaluate the sintering behavior of cordierite-based glass-ceramics. Results show that the additives both heavy metal oxide and rare earth oxide promote the sintering and lower the phase temperature from μ- to α-cordierite as well as affect the dielectric properties of sintered glass-ceramics. The complete-densification temperature for samples is as low as 900 ℃. The materials have a low dielectric constant (≈5), a low thermal expansion coefficient ((2.80~3.52)×10^(-6) ℃^(-1)) and a low dissipation factor (≤0.2%) and can be co-fired with high conductivity metals such as Au, Cu, Ag/Pd paste at low temperature (below 950 ℃), which makes it to be a promising material for low-temperature co-fired ceramic substrates.展开更多
The solid oxide fuel cell (SOFC) is a high-efficient and environmentally friendly power generation system.The rare earth oxide materials are used extensively in the manufacturing of SOFC components.In particular, the ...The solid oxide fuel cell (SOFC) is a high-efficient and environmentally friendly power generation system.The rare earth oxide materials are used extensively in the manufacturing of SOFC components.In particular, the CeO2doped with Gd2O3 or Sm2O3, lanthanide perovskite oxides are indispensable and key materials for developing the intermediate temperature SOFC.The research and development status of application of high purity rare earth oxides in SOFC was overviewed.The rare earth oxide-based and -doped materials were discussed for the SOFC components.Concerning the rare earth oxides applicable to SOFC, several topics were also pointed out for further researching and developing.展开更多
Fine powders of γ-Fe_2O_3,doped with Y_2O_3,CeO_2,Eu_2O_3 or Tb_2O_3 have been prepared by the chemical co-precipitation method.The sensitivity of gas sensation has been measured with respect to the relative resist- ...Fine powders of γ-Fe_2O_3,doped with Y_2O_3,CeO_2,Eu_2O_3 or Tb_2O_3 have been prepared by the chemical co-precipitation method.The sensitivity of gas sensation has been measured with respect to the relative resist- ance change in the ceramic matrix upon introduction of inflammable gases.The structure of the materials has been studied with X-ray diffraction spectroscopy(XRD),electron diffraction spectroscopy( ED) and transmis- sion electron microscopy(TEM).The addition of rare earth oxides,which improves ceramic microstructure of γ-Fe_2O_3,improves gas sensitivity of γ-Fe_2O_3.The stability can be increased because of the increase of phase transition temperature.In addition,the selectivity of gas sensation of γ-Fe_2O_3 can be improved because of the variation of rare earth oxides.展开更多
The electrical properties of high-entropy ceramics(HECs)have been extensively studied in recent years due to their unique structural characteristics and fascinating functional properties induced by entropy engineering...The electrical properties of high-entropy ceramics(HECs)have been extensively studied in recent years due to their unique structural characteristics and fascinating functional properties induced by entropy engineering.Novel high-entropy(Sm_(0.2)Eu_(0.2)Gd_(0.2)Ho_(0.2)Yb_(0.2))CrO_(3)(HE-RECrO_(3))nanofibers were prepared by electro spinning.This work demonstrates that HE-RECrO_(3)nanofibe rs were successfully synthesized at a low temperature(800℃),which is approximately 400℃lower than the temperatures at which chromate ceramics were synthesized via the sol-gel method and the solid-state reaction method.The resistivity of HE-RECrO_(3)nanofibers decreases exponentially with increasing temperature from 25 to600℃.The logarithm of the resistivity is linearly related to the inverse of the temperature,confirming the negative temperature coefficient property of HE-RECrO_(3)nanofibers.The B_(25/50)value of the HERECrO_(3)nanofibers reaches 4072 K.In conclusion,HE-RECrO_(3)nanofibers are expected to be potential candidates for negative-temperature-coefficient(NTC)thermistors.展开更多
The cracking morphology of the hardfacing specimens taken from steel 5CrNiMo was observed. Meanwhile, the residual stress fields were measured and simulated. Based on experiment mentioned above, the improved structure...The cracking morphology of the hardfacing specimens taken from steel 5CrNiMo was observed. Meanwhile, the residual stress fields were measured and simulated. Based on experiment mentioned above, the improved structure and modified inclusion in hardfacing metal with rare earth (RE) oxide were analyzed. The results show that, the hardfacing crack is initiated from the coarse dendritic crystal grain boundary, inclusions and coarse austenite grain boundary in the HAZ and propagated by the residual stress existing in the center of the hardfacing metal and HAZ. The primary columnar grain structure can be refined by adding RE oxide in the coating of the electrode. The inclusion in the hardfacing metal can be modified as well. Meanwhile, if the martensite transformation temperature is decreased, the largest value of the residual tensile stress in the dangerous region can be reduced.展开更多
Corrosion resistant properties of Si3N4-SiC and TiB2 at high temperature were studied. The experiments were carried out in metallic neodymium and NdF3-LiF-Nd2O3 system, respectively. Corrosion temperature was 1100 ℃ ...Corrosion resistant properties of Si3N4-SiC and TiB2 at high temperature were studied. The experiments were carried out in metallic neodymium and NdF3-LiF-Nd2O3 system, respectively. Corrosion temperature was 1100 ℃ and the holding time of corrosion experiments was 24 h. Corrosion products were analyzed by XRD and SEM, and corrosion behavior and corrosion mechanism of the experiments were studied. The results showed that Si3N4-SiC was corroded seriously in the above-mentioned two systems. A few of compounds were found on the surface of Si3N4-SiC, and surface structure of the Si3N4-SiC samples was loosened. The corrosion resistance of TiB2 was better than that of Si3N4-SiC. Oxidation resistance of TiB2 at high temperature should be enhanced.展开更多
With Al2O3, Dy2O3, and SiO2 as starting materials, the basic glass of Al2O3-Dy2O3-SiO2 system was prepared by conventional melting technology, and their thermal expansion coefficients (TECs) at different anneal time...With Al2O3, Dy2O3, and SiO2 as starting materials, the basic glass of Al2O3-Dy2O3-SiO2 system was prepared by conventional melting technology, and their thermal expansion coefficients (TECs) at different anneal time were investigated. TECs of the basic glass, which were heat-treated under different temperature, were also investigated. The result showed that TECs of the basic glass gradually approached a fixed value as the anneal time was extended, which suggested that most of the inner stress had been eliminated. After heat treatment, the contents of Dy2O3, Dy2Si2O7, and a new crystal increased up to 1200 ℃ and decreased below 1250 ℃, which was consistent with the TEC change of crystallized samples. This suggests that the crystal has a direct effect on TECs of the crystallized samples.展开更多
The solid solutions Ce_(0.9)RE_(0.1)O_(2-δ)(RE=Pr, Nd,Sm, Gd, Dy) were prepared by sol-gel method. The XRD measurement shows that the solid solution is crystallized in cubic fluorite-type structure and the cell volum...The solid solutions Ce_(0.9)RE_(0.1)O_(2-δ)(RE=Pr, Nd,Sm, Gd, Dy) were prepared by sol-gel method. The XRD measurement shows that the solid solution is crystallized in cubic fluorite-type structure and the cell volume of Ce_(0.9)RE_(0.1)O_(2-δ) decreases with the increase of atomic number of RE. The ionic conduction for Ce_(0.9)RE_(0.1)O_(2-δ) was measured by impedance spectroscopy and Ce_(0.9)Pr_(0.1)O_(2-δ) has better conductivity. The linear thermal expansion of Ce_(0.9)RE_(0.1)O_(2-δ) decreases with the increase of atomic number of RE.展开更多
Low thermal conductivity, matched thermal expansion coefficient and good compatibility are general requirements for the environmental/thermal barrier coatings(EBCs/TBCs) and interphases for Al2O3 f/Al2O3 composites. I...Low thermal conductivity, matched thermal expansion coefficient and good compatibility are general requirements for the environmental/thermal barrier coatings(EBCs/TBCs) and interphases for Al2O3 f/Al2O3 composites. In this work, a novel high-entropy(HE) rare-earth phosphate monazite ceramic (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is designed and successfully synthesized. This new type of HE rare-earth phosphate monazite exhibits good chemical compatibility with Al2O3, without reaction with Al2O3 as high as 1600℃ in air. Moreover, the thermal expansion coefficient(TEC) of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4(8.9 × 10^-6/℃ at 300–1000℃) is close to that of Al2O3. The thermal conductivity of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 at room temperature is as low as 2.08 W·m^-1·K^-1, which is about 42% lower than that of La PO4. Good chemical compatibility, close TEC to that of Al2O3, and low thermal conductivity indicate that HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is suitable as a candidate EBC/TBC material and an interphase for Al2O3 f/Al2O3 composites.展开更多
The effects of Y_(2)O_(3) on the microstructure, microhardness, wear resistance, high-temperature oxidation resistance, hot corrosion resistance, and electrochemical corrosion behaviour of CoCrFeNiTiNb high entropy al...The effects of Y_(2)O_(3) on the microstructure, microhardness, wear resistance, high-temperature oxidation resistance, hot corrosion resistance, and electrochemical corrosion behaviour of CoCrFeNiTiNb high entropy alloy coatings formed on Ti-6Al-4V alloy surfaces were studied. The results show that the addition of Y_(2)O_(3) changes the proportion of the phase but does not change its type. The average grain size is only 1/4.7 of that of the high entropy alloy(HEA) coating, and the fine-grained strengthening leads to increases in the microhardness and wear resistance of 21.8% and 26.9%, respectively. The addition of Y_(2)O_(3) enhances the denseness and bonding properties of the oxide and corrosion product layers, reducing the oxidation and hot corrosion rates by 60.3% and 40.3%, respectively. The addition of Y_(2)O_(3) doubles the corrosion resistance which is attributed to the refinement of the grains, the increased proportion of HCP and TiN, and the weakening of galvanic coupling corrosion.展开更多
文摘High-entropy materials(HEMs)have better mechanical,thermal,and electrical properties than traditional materials due to their special"high entropy effect".They can also adjust the performance of high entropy ceramics by adjusting the proportion of raw materials,and have broad application prospects in many fields.This article provides a review of the high entropy effect,preparation methods,and main applications of high entropy ceramic materials,especially exploring relevant research on high entropy perovskite ceramics.It is expected to provide reference for the promotion of scientific research and the development of further large-scale applications of high-entropy ceramic materials.
基金the Lingchuang Research Project of China National Nuclear Co.,the National Key R&D Program of China(No.2022YFB3504302)the Fujian Provincial Natural Fund Project(No.2021J05101)+1 种基金the Young Elite Scientists Sponsorship Program by CAST(No.YESS20210336)the XMIREM autonomously deployment project(No.2023GG03).
文摘In response to the development of the concepts of“carbon neutrality”and“carbon peak”,it is critical to developing materials with high near-infrared(NIR)solar reflectivity and high emissivity in the atmospheric transparency window(ATW;8–13μm)to advance zero energy consumption radiative cooling technology.To regulate emission and reflection properties,a series of high-entropy rare earth stannate ceramics(HE-RE_(2)Sn_(2)O_(7):(Y_(0.2)La_(0.2)Nd_(0.2)Eu_(0.2)Gd_(0.2))_(2)Sn_(2)O_(7),(Y_(0.2)La_(0.2)Sm_(0.2)Eu_(0.2)Lu_(0.2))_(2)Sn_(2)O_(7),and(Y_(0.2)La_(0.2)Gd_(0.2)Yb_(0.2)Lu_(0.2))_(2)Sn_(2)O_(7))with severe lattice distortion were prepared using a solid phase reaction followed by a pressureless sintering method for the first time.Lattice distortion is accomplished by introducing rare earth elements with different cation radii and mass.The as-synthesized HE-RE_(2)Sn_(2)O_(7)ceramics possess high ATW emissivity(91.38%–95.41%),high NIR solar reflectivity(92.74%–97.62%),low thermal conductivity(1.080–1.619 W·m^(−1)·K^(−1)),and excellent chemical stability.On the one hand,the lattice distortion intensifies the asymmetry of the structural unit to cause a notable alteration in the electric dipole moment,ultimately enlarging the ATW emissivity.On the other hand,by selecting difficult excitation elements,HE-RE_(2)Sn_(2)O_(7),which has a wide band gap(Eg),exhibits high NIR solar reflectivity.Hence,the multi-component design can effectively enhance radiative cooling ability of HE-RE_(2)Sn_(2)O_(7)and provide a novel strategy for developing radiative cooling materials.
文摘Antibacterial ceramic was prepared by doping enamel slurry with composite phosphate inorganic antibacterial materials containing rare earth (inorganic antibacterial additives), and then the mechanisms for activating water and improving seed germinative property were tested by nuclear magnetic resonance (NMR) and the method of testing oxygen dissolved in activated water. Results show that the half peak width of (()^(17)O-NMR) for tap water activated by the antibacterial ceramic drops from 115.36 to 99.15 Hz, and oxygen concentrations of activated water increase by 20%, germinate rate of horsebean and earthnut seeds increases by 12.5% and 7.5%, respectively. Therefore antibacterial ceramic doped enamel slurry with inorganic antibacterial additives containing rare earth can reduce the volume of clusters of water molecules, improve activation of tap water, and promote plant seeds germinate.
基金the Natural Science Foundation of Shandong Province (Y2005F04)Jinan Young Star Plan of Science and Technology (08108)
文摘Through the addition of Y, Sm and Ce in Al2O3/(W, Ti)C ceramic matrix, it was found that the amount and kind of the added rare earth elements have some different influences on the mechanical properties and wear resistance of the composite. Under the present experimental conditions, the flank wear curves of the selected ceramic tool materials when machining the hardened tool steel obeyed the wear law well. But wear resistance of different ceramic materials varied with each other. Wear resistance of rare earth ceramic tool materials was higher than that of the corresponding materials without rare earth. Wear modes of the developed Al2O3/(W, Ti)C series rare earth ceramic tool materials were mainly flank wear and accompanied with slight crater wear.
文摘Rare earth composite ceramic materials (RE/CM) were prepared by the method of firing the mixtures of the rare earth elements, polar crystal mineral materials and clays. The effects of processing method on the reducing exhaust emissions were studied. The results show that after dealt with the ceramic balls, the surface tension of gasoline, and the CO concentration among exhaust emissions during combustion, decrease by 2.7% and 11.5%, respectively; however the temperature of the inner flue increases by 4.8%.
基金Project supported by National Natural Science Foundation of China (50405047)Natural Science foundation of Shandong Province (Y2005F04)Jinan Young Star Plan of Science and Technology (08108)
文摘Development and application of new ceramic die materials is one of the important topics in the field of die research. The composition, processing technology, mechanical property and engineering performance of the ceramic materials such as cermet, ZTA, TZP, TZP/Al2O3, TZP/TiC/Al2O3, PSZ and Sialon, etc., with rare earth yttrium, lanthanum and cerium, and so on working as additives, were investigated and analyzed in the present study. Problems existed in the research and application of rare earth ceramic die materials were discussed. Rare earth additives can effectively improve the mechanical property and engineering performance of ceramic die materials. Thus, it will have further perspectives of wider application. More attention should be paid in the future to the toughening and strengthening of the ceramic die materials, the adding forms and kinds of rare earth elements and acting mechanisms of rare earth additives in ceramic die materials.
文摘Cordierite-based glass-ceramics with non-stoichiometric composition doped with rare earth oxide (REO_2) and heavy metal oxide (M_2O_3) respectively were fabricated from glass powders. After sintering and crystallization heat treatment, various physical properties, including compact density and apparent porosity, were examined to evaluate the sintering behavior of cordierite-based glass-ceramics. Results show that the additives both heavy metal oxide and rare earth oxide promote the sintering and lower the phase temperature from μ- to α-cordierite as well as affect the dielectric properties of sintered glass-ceramics. The complete-densification temperature for samples is as low as 900 ℃. The materials have a low dielectric constant (≈5), a low thermal expansion coefficient ((2.80~3.52)×10^(-6) ℃^(-1)) and a low dissipation factor (≤0.2%) and can be co-fired with high conductivity metals such as Au, Cu, Ag/Pd paste at low temperature (below 950 ℃), which makes it to be a promising material for low-temperature co-fired ceramic substrates.
文摘The solid oxide fuel cell (SOFC) is a high-efficient and environmentally friendly power generation system.The rare earth oxide materials are used extensively in the manufacturing of SOFC components.In particular, the CeO2doped with Gd2O3 or Sm2O3, lanthanide perovskite oxides are indispensable and key materials for developing the intermediate temperature SOFC.The research and development status of application of high purity rare earth oxides in SOFC was overviewed.The rare earth oxide-based and -doped materials were discussed for the SOFC components.Concerning the rare earth oxides applicable to SOFC, several topics were also pointed out for further researching and developing.
基金The project supported by the National Natural Science Foundation of China
文摘Fine powders of γ-Fe_2O_3,doped with Y_2O_3,CeO_2,Eu_2O_3 or Tb_2O_3 have been prepared by the chemical co-precipitation method.The sensitivity of gas sensation has been measured with respect to the relative resist- ance change in the ceramic matrix upon introduction of inflammable gases.The structure of the materials has been studied with X-ray diffraction spectroscopy(XRD),electron diffraction spectroscopy( ED) and transmis- sion electron microscopy(TEM).The addition of rare earth oxides,which improves ceramic microstructure of γ-Fe_2O_3,improves gas sensitivity of γ-Fe_2O_3.The stability can be increased because of the increase of phase transition temperature.In addition,the selectivity of gas sensation of γ-Fe_2O_3 can be improved because of the variation of rare earth oxides.
基金Project supported by the National Key Research and Development Program of China(2019YFC0605000)the"Transformational Technologies for Clean Energy and Demonstration",Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21000000)+4 种基金the Independent Deployment Project of Ganjiang Innovation Research Institute of Chinese Academy of Sciences(E055A002)the Independent Deployment Project of China Fujian Innovation Laboratory of Optoelectronic Information Technology(2021ZZ109)the Fujian Provincial Natural Fund(2021J05101)the National Natural Science Foundation of China(21771196,62275276)Advanced Energy Science and Technology Guangdong Laboratory(HND20TDGFDC00)。
文摘The electrical properties of high-entropy ceramics(HECs)have been extensively studied in recent years due to their unique structural characteristics and fascinating functional properties induced by entropy engineering.Novel high-entropy(Sm_(0.2)Eu_(0.2)Gd_(0.2)Ho_(0.2)Yb_(0.2))CrO_(3)(HE-RECrO_(3))nanofibers were prepared by electro spinning.This work demonstrates that HE-RECrO_(3)nanofibe rs were successfully synthesized at a low temperature(800℃),which is approximately 400℃lower than the temperatures at which chromate ceramics were synthesized via the sol-gel method and the solid-state reaction method.The resistivity of HE-RECrO_(3)nanofibers decreases exponentially with increasing temperature from 25 to600℃.The logarithm of the resistivity is linearly related to the inverse of the temperature,confirming the negative temperature coefficient property of HE-RECrO_(3)nanofibers.The B_(25/50)value of the HERECrO_(3)nanofibers reaches 4072 K.In conclusion,HE-RECrO_(3)nanofibers are expected to be potential candidates for negative-temperature-coefficient(NTC)thermistors.
基金Project supported by Key Project of Science and Technology of Hebei Province (04212201D) and Research Foundationfor theReturned Overseas Chinese Scholars of State Education Ministry
文摘The cracking morphology of the hardfacing specimens taken from steel 5CrNiMo was observed. Meanwhile, the residual stress fields were measured and simulated. Based on experiment mentioned above, the improved structure and modified inclusion in hardfacing metal with rare earth (RE) oxide were analyzed. The results show that, the hardfacing crack is initiated from the coarse dendritic crystal grain boundary, inclusions and coarse austenite grain boundary in the HAZ and propagated by the residual stress existing in the center of the hardfacing metal and HAZ. The primary columnar grain structure can be refined by adding RE oxide in the coating of the electrode. The inclusion in the hardfacing metal can be modified as well. Meanwhile, if the martensite transformation temperature is decreased, the largest value of the residual tensile stress in the dangerous region can be reduced.
基金the National Basic Research Programof China (2007CB210305)
文摘Corrosion resistant properties of Si3N4-SiC and TiB2 at high temperature were studied. The experiments were carried out in metallic neodymium and NdF3-LiF-Nd2O3 system, respectively. Corrosion temperature was 1100 ℃ and the holding time of corrosion experiments was 24 h. Corrosion products were analyzed by XRD and SEM, and corrosion behavior and corrosion mechanism of the experiments were studied. The results showed that Si3N4-SiC was corroded seriously in the above-mentioned two systems. A few of compounds were found on the surface of Si3N4-SiC, and surface structure of the Si3N4-SiC samples was loosened. The corrosion resistance of TiB2 was better than that of Si3N4-SiC. Oxidation resistance of TiB2 at high temperature should be enhanced.
基金Project supported by the Ministry of Science and Technology of China (2006CB601104)
文摘With Al2O3, Dy2O3, and SiO2 as starting materials, the basic glass of Al2O3-Dy2O3-SiO2 system was prepared by conventional melting technology, and their thermal expansion coefficients (TECs) at different anneal time were investigated. TECs of the basic glass, which were heat-treated under different temperature, were also investigated. The result showed that TECs of the basic glass gradually approached a fixed value as the anneal time was extended, which suggested that most of the inner stress had been eliminated. After heat treatment, the contents of Dy2O3, Dy2Si2O7, and a new crystal increased up to 1200 ℃ and decreased below 1250 ℃, which was consistent with the TEC change of crystallized samples. This suggests that the crystal has a direct effect on TECs of the crystallized samples.
文摘The solid solutions Ce_(0.9)RE_(0.1)O_(2-δ)(RE=Pr, Nd,Sm, Gd, Dy) were prepared by sol-gel method. The XRD measurement shows that the solid solution is crystallized in cubic fluorite-type structure and the cell volume of Ce_(0.9)RE_(0.1)O_(2-δ) decreases with the increase of atomic number of RE. The ionic conduction for Ce_(0.9)RE_(0.1)O_(2-δ) was measured by impedance spectroscopy and Ce_(0.9)Pr_(0.1)O_(2-δ) has better conductivity. The linear thermal expansion of Ce_(0.9)RE_(0.1)O_(2-δ) decreases with the increase of atomic number of RE.
基金financially supported by the National Natural Science Foundation of China (Nos. 51672064 and U1435206)
文摘Low thermal conductivity, matched thermal expansion coefficient and good compatibility are general requirements for the environmental/thermal barrier coatings(EBCs/TBCs) and interphases for Al2O3 f/Al2O3 composites. In this work, a novel high-entropy(HE) rare-earth phosphate monazite ceramic (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is designed and successfully synthesized. This new type of HE rare-earth phosphate monazite exhibits good chemical compatibility with Al2O3, without reaction with Al2O3 as high as 1600℃ in air. Moreover, the thermal expansion coefficient(TEC) of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4(8.9 × 10^-6/℃ at 300–1000℃) is close to that of Al2O3. The thermal conductivity of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 at room temperature is as low as 2.08 W·m^-1·K^-1, which is about 42% lower than that of La PO4. Good chemical compatibility, close TEC to that of Al2O3, and low thermal conductivity indicate that HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is suitable as a candidate EBC/TBC material and an interphase for Al2O3 f/Al2O3 composites.
基金Project supported by the National Natural Science Foundation of China(51805285,51605237)the projects of Shandong Province"Youth Innovation Science and Technology Support Plan"(2021KJ026)+1 种基金the Key Research and Development Project of Shandong Province(2018GGX103031)the Natural Science Foundation of Shandong Province(ZR2021ME023)。
文摘The effects of Y_(2)O_(3) on the microstructure, microhardness, wear resistance, high-temperature oxidation resistance, hot corrosion resistance, and electrochemical corrosion behaviour of CoCrFeNiTiNb high entropy alloy coatings formed on Ti-6Al-4V alloy surfaces were studied. The results show that the addition of Y_(2)O_(3) changes the proportion of the phase but does not change its type. The average grain size is only 1/4.7 of that of the high entropy alloy(HEA) coating, and the fine-grained strengthening leads to increases in the microhardness and wear resistance of 21.8% and 26.9%, respectively. The addition of Y_(2)O_(3) enhances the denseness and bonding properties of the oxide and corrosion product layers, reducing the oxidation and hot corrosion rates by 60.3% and 40.3%, respectively. The addition of Y_(2)O_(3) doubles the corrosion resistance which is attributed to the refinement of the grains, the increased proportion of HCP and TiN, and the weakening of galvanic coupling corrosion.