Summary: Abnormal cholesterol metabolism is associated with an elevated risk of developing athero- sclerosis, hypertension, and diabetes etc. Na+/K+-ATPase was found to regulate cholesterol synthesis, distribution ...Summary: Abnormal cholesterol metabolism is associated with an elevated risk of developing athero- sclerosis, hypertension, and diabetes etc. Na+/K+-ATPase was found to regulate cholesterol synthesis, distribution and trafficking. This study aimed to examine the effect of high-fat diet on cholesterol me- tabolism in rats and the role of Na+/K+-ATPase/Src/ERK signaling pathway in the process. Forty male SD rats were evenly divided into high-fat diet group and control group at random. Animals in the former group were fed on high-fat diet for 12 weeks, and those fed on basic diet served as control. Blood lipids, including total cholesterol (TC), triglyceride (TG), high density lipoprotein-cholesterol (HDL-C), and low density lipoprotein-cholesteral (LDL-C) levels, were detected at 3, 6 and 12 weeks. The ratio of cholesterol content in cytoplasm to that in cell membrane was detected in liver tissues. RT-PCR and Western blotting were used to measure the expression of lipid metabolism-associated genes (HMG-CoA reductase and SREBP-2) after 12-week high-fat diet. Na+/K+-ATPase/Src/ERK signaling path- way-related components (Na+/K+-ATPase ctl, Src-PY418 and pERK1/2) were also measured by West- ern blotting. The results showed that the serum TC, TG, and LDL-C levels were significantly higher in high-fat diet group than those in control group, while the HDL-C level was significantly lower in high-fat diet group at 6 weeks (P〈0.01). High-fat diet led to an increase in the cholesterol content in the cytoplasm and cell membrane. The ratio of cholesterol content in cytoplasm to that in cell membrane was elevated over time. The expression of HMG-CoA reductase and SREBP-2 was significantly sup- pressed at mRNA and protein levels after 12-week high-fat diet (P〈0.05). Moreover, high-fat diet pro- moted the expression of Na+/K+-ATPase α1 but suppressed the phosphorylation of Src-PY418 and ERK1/2 at 12 weeks (P〈0.05). It was concluded that high-fat diet regulates cholesterol metabolism, and Na+/K+-ATPase signaling pathway is involved in the process possibly by regulating the expression of lipid metabolism-associated proteins HMG-CoA reductase and SREBP-2.展开更多
AIM To elucidate how high diet-induced endoplasmic reticulum-stress upregulates thioredoxin interacting protein expression in Müller cells leading to retinal inflammation. METHODS Male C57Bl/J mice were fed eithe...AIM To elucidate how high diet-induced endoplasmic reticulum-stress upregulates thioredoxin interacting protein expression in Müller cells leading to retinal inflammation. METHODS Male C57Bl/J mice were fed either normal diet or 60% high fat diet for 4-8 wk. During the 4 wk study, mice received phenyl-butyric acid(PBA); endoplasmic reticulum-stress inhibitor; for 2 wk. Insulin resistance was assessed by oral glucose tolerance. Effects of palmitate-bovine serum albumin(BSA)(400 μmol/L) were examined in retinal Müller glial cell line and primary Müller cells isolated from wild type and thioredoxin interacting protein knock-out mice. Expression of thioredoxin interacting protein, endoplasmic reticulum-stress markers, mi R-17-5p m RNA, as well as nucleotide-binding oligomerization domain-like receptor protein(NLRP3) and IL1β protein was determined.RESULTS High fat diet for 8 wk induced obesity and insulin resistance evident by increases in body weight and impaired glucose tolerance. By performing quantitative real-time polymerase chain reaction, we found that high fat diet triggered the expression of retinal endoplasmic reticulum-stress markers(P < 0.05). These effects were associated with increased thioredoxin interacting protein and decreased mi R-17-5p expression, whichwere restored by inhibiting endoplasmic reticulumstress with PBA(P < 0.05). In vitro, palmitate-BSA triggered endoplasmic reticulum-stress markers, which was accompanied with reduced mi R-17-5p and induced thioredoxin interacting protein m RNA in retinal Müller glial cell line(P < 0.05). Palmitate upregulated NLRP3 and IL1β expression in primary Müller cells isolated from wild type. However, using primary Müller cells isolated from thioredoxin interacting protein knock-out mice abolished palmitate-mediated increase in NLRP3 and IL1β.CONCLUSION Our work suggests that targeting endoplasmic reticulumstress or thioredoxin interacting protein are potential therapeutic strategies for early intervention of obesityinduced retinal inflammation.展开更多
Diet is an important health factor and it has been recently associated with neurodegenerative diseases and cognitive decline. Here it was investigated the effect of fatty acid or cholesterol rich diets with the possib...Diet is an important health factor and it has been recently associated with neurodegenerative diseases and cognitive decline. Here it was investigated the effect of fatty acid or cholesterol rich diets with the possible acceleration of the biological decline in adult hippocampal neurogenesis associated with aging in middle-age rats, and its impact on anxiety and memory function. It was found that a diet of 10 weeks with saturated fatty acids and cholesterol has a detrimental effect on memory function, exerts like-anxiety behavior and diminishes the presence of new generated neurons in the hippocampus in six months old rats.展开更多
BACKGROUND:Non-alcoholic fatty liver disease(NAFLD)is one of the most frequent causes of liver diseases,with markedly increased prevalence.However,its mechanisms are not clear.The present study was undertaken to illus...BACKGROUND:Non-alcoholic fatty liver disease(NAFLD)is one of the most frequent causes of liver diseases,with markedly increased prevalence.However,its mechanisms are not clear.The present study was undertaken to illustrate the role of caveolin-1(cav1)and the scavenger receptor class B type 1(SR-B1)in NAFLD.METHODS:Adult male C57BL/6 mice were fed with a normal diet or high fat and cholesterol(HFC)diet for 14 weeks.The mice were sacrificed to collect plasma and harvest the liver;their plasma lipid concentration was measured.Hepatic cav1and SR-B1 mRNA and protein expression were determined by real-time quantitative polymerase chain reaction(qPCR)and Western blotting,respectively.In order to study cav1 and SR-B1distribution and change in hepatocytes,immunohistochemical analysis was performed.RESULTS:HFC diet increased plasma lipids,induced NAFLD and increased the liver/body weight ratio.Compared to the control mice(n=6),the mRNA and protein levels of cav1 and SR-B1 in liver tissue of the NAFLD mice(n=12)increased significantly(cav1 mRNA:1.536±0.226 vs 0.980±0.272,P【0.05;protein:0.643±0.240 vs 0.100±0.130,P【0.01;SR-B1 mRNA:1.377±0.125 vs 0.956±0.151,P【0.01;protein:2.156±0.507vs 0.211±0.211,P【0.01).Furthermore,both cav1 and SR-B1immunoreactivity increased and their distribution was also changed,mainly in the plasma membrane of hepatocytes,cytoplasm and membrane of lipid droplets and around.CONCLUSION:NAFLD is associated with increased concentration of plasma lipids and upregulation of hepatic cav1 and SR-B1 gene and protein expressions,which indicate that cav1 and SR-B1 might play crucial roles in the pathogenesis of NAFLD.展开更多
AIM To evaluate the levels of mi R-192-5 p in non-alcoholic fatty liver disease(NAFLD) models and demonstrate the role of mi R-192-5 p in lipid accumulation. METHODS Thirty Sprague Dawley rats were randomly divided in...AIM To evaluate the levels of mi R-192-5 p in non-alcoholic fatty liver disease(NAFLD) models and demonstrate the role of mi R-192-5 p in lipid accumulation. METHODS Thirty Sprague Dawley rats were randomly divided into three groups, which were given a standard diet, a high-fat diet(HFD), and an HFD with injection of liraglutide. At the end of 16 weeks, hepatic mi R-192-5 p and stearoyl-Co A desaturase 1(SCD-1) levels were measured. Mi R-192-5 p mimic and inhibitor and SCD-1 si RNA were transfected into Huh7 cells exposed to palmitic acid(PA). Lipid accumulation was evaluated by oil red O staining and triglyceride assays. Direct interaction was validated by dual-luciferase reporter gene assays.RESULTS The HFD rats showed a 0.46-fold decrease and a 3.5-fold increase in hepatic mi R-192-5 p and SCD-1 protein levels compared with controls, respectively, which could be reversed after disease remission by liraglutide injection(P < 0.01). The Huh7 cells exposed to PA also showed down-regulation and up-regulation of mi R-192-5 p and SCD-1 protein levels, respectively(P < 0.01). Transfection with mi R-192-5 p mimic and inhibitor in Huh7 cells induced dramatic repression and promotion of SCD-1 protein levels, respectively(P < 0.01). Luciferase activity was suppressed and enhanced by mi R-192-5 p mimic and inhibitor, respectively, in wild-type SCD-1(P < 0.01) but not in mutant SCD-1. Mi R-192-5 p overexpression reduced lipid accumulation significantly in PA-treated Huh7 cells, and SCD-1 si RNA transfection abrogated the lipid deposition aggravated by mi R-192-5 p inhibitor(P < 0.01).CONCLUSION This study demonstrates that mi R-192-5 p has a negative regulatory role in lipid synthesis, which is mediated through its direct regulation of SCD-1.展开更多
目的:研究高脂高胆固醇饮食(Paigen饮食)是否可以导致C57BL/6J小鼠肺组织的脂质蓄积。方法:66只C57BL/6J雄性6~8周龄小鼠随机分为2组,分别喂饲普通饮食和Paigen饮食,于喂养12、16、20周3个时间点,取主动脉做冰冻切片,油红O染色观察...目的:研究高脂高胆固醇饮食(Paigen饮食)是否可以导致C57BL/6J小鼠肺组织的脂质蓄积。方法:66只C57BL/6J雄性6~8周龄小鼠随机分为2组,分别喂饲普通饮食和Paigen饮食,于喂养12、16、20周3个时间点,取主动脉做冰冻切片,油红O染色观察粥样硬化斑块形成情况;肺组织冰冻切片油红O染色,观察肺组织脂质蓄积情况;体外培养A549细胞观察用不同浓度低密度脂蛋白(Low density lipoprotein,LDL)处理后,A549细胞内脂质蓄积情况。结果:Paigen饮食可导致C57BL/6J小鼠主动脉粥样硬化;同时,不同时间点C57BL/6J小鼠肺组织油红O染色结果提示该饮食还可以导致C57BL/6J小鼠肺组织出现脂质蓄积,并随着时间延长而加剧;不同浓度LDL刺激A549细胞的油红O染色结果提示:A549细胞的脂质蓄积与LDL处理的浓度间存在剂量效应关系。结论:Paigen饮食可以导致C57BL/6J小鼠肺脏出现时间依赖性的脂质蓄积,其机制可能与肺泡Ⅱ型上皮细胞的脂质代谢异常有关。展开更多
基金supported by a grant from the National Natural Science Foundation of China(No.81200637)
文摘Summary: Abnormal cholesterol metabolism is associated with an elevated risk of developing athero- sclerosis, hypertension, and diabetes etc. Na+/K+-ATPase was found to regulate cholesterol synthesis, distribution and trafficking. This study aimed to examine the effect of high-fat diet on cholesterol me- tabolism in rats and the role of Na+/K+-ATPase/Src/ERK signaling pathway in the process. Forty male SD rats were evenly divided into high-fat diet group and control group at random. Animals in the former group were fed on high-fat diet for 12 weeks, and those fed on basic diet served as control. Blood lipids, including total cholesterol (TC), triglyceride (TG), high density lipoprotein-cholesterol (HDL-C), and low density lipoprotein-cholesteral (LDL-C) levels, were detected at 3, 6 and 12 weeks. The ratio of cholesterol content in cytoplasm to that in cell membrane was detected in liver tissues. RT-PCR and Western blotting were used to measure the expression of lipid metabolism-associated genes (HMG-CoA reductase and SREBP-2) after 12-week high-fat diet. Na+/K+-ATPase/Src/ERK signaling path- way-related components (Na+/K+-ATPase ctl, Src-PY418 and pERK1/2) were also measured by West- ern blotting. The results showed that the serum TC, TG, and LDL-C levels were significantly higher in high-fat diet group than those in control group, while the HDL-C level was significantly lower in high-fat diet group at 6 weeks (P〈0.01). High-fat diet led to an increase in the cholesterol content in the cytoplasm and cell membrane. The ratio of cholesterol content in cytoplasm to that in cell membrane was elevated over time. The expression of HMG-CoA reductase and SREBP-2 was significantly sup- pressed at mRNA and protein levels after 12-week high-fat diet (P〈0.05). Moreover, high-fat diet pro- moted the expression of Na+/K+-ATPase α1 but suppressed the phosphorylation of Src-PY418 and ERK1/2 at 12 weeks (P〈0.05). It was concluded that high-fat diet regulates cholesterol metabolism, and Na+/K+-ATPase signaling pathway is involved in the process possibly by regulating the expression of lipid metabolism-associated proteins HMG-CoA reductase and SREBP-2.
文摘AIM To elucidate how high diet-induced endoplasmic reticulum-stress upregulates thioredoxin interacting protein expression in Müller cells leading to retinal inflammation. METHODS Male C57Bl/J mice were fed either normal diet or 60% high fat diet for 4-8 wk. During the 4 wk study, mice received phenyl-butyric acid(PBA); endoplasmic reticulum-stress inhibitor; for 2 wk. Insulin resistance was assessed by oral glucose tolerance. Effects of palmitate-bovine serum albumin(BSA)(400 μmol/L) were examined in retinal Müller glial cell line and primary Müller cells isolated from wild type and thioredoxin interacting protein knock-out mice. Expression of thioredoxin interacting protein, endoplasmic reticulum-stress markers, mi R-17-5p m RNA, as well as nucleotide-binding oligomerization domain-like receptor protein(NLRP3) and IL1β protein was determined.RESULTS High fat diet for 8 wk induced obesity and insulin resistance evident by increases in body weight and impaired glucose tolerance. By performing quantitative real-time polymerase chain reaction, we found that high fat diet triggered the expression of retinal endoplasmic reticulum-stress markers(P < 0.05). These effects were associated with increased thioredoxin interacting protein and decreased mi R-17-5p expression, whichwere restored by inhibiting endoplasmic reticulumstress with PBA(P < 0.05). In vitro, palmitate-BSA triggered endoplasmic reticulum-stress markers, which was accompanied with reduced mi R-17-5p and induced thioredoxin interacting protein m RNA in retinal Müller glial cell line(P < 0.05). Palmitate upregulated NLRP3 and IL1β expression in primary Müller cells isolated from wild type. However, using primary Müller cells isolated from thioredoxin interacting protein knock-out mice abolished palmitate-mediated increase in NLRP3 and IL1β.CONCLUSION Our work suggests that targeting endoplasmic reticulumstress or thioredoxin interacting protein are potential therapeutic strategies for early intervention of obesityinduced retinal inflammation.
文摘Diet is an important health factor and it has been recently associated with neurodegenerative diseases and cognitive decline. Here it was investigated the effect of fatty acid or cholesterol rich diets with the possible acceleration of the biological decline in adult hippocampal neurogenesis associated with aging in middle-age rats, and its impact on anxiety and memory function. It was found that a diet of 10 weeks with saturated fatty acids and cholesterol has a detrimental effect on memory function, exerts like-anxiety behavior and diminishes the presence of new generated neurons in the hippocampus in six months old rats.
基金supported by a grant from the National Natural Science Foundation of China(491010-N11026)
文摘BACKGROUND:Non-alcoholic fatty liver disease(NAFLD)is one of the most frequent causes of liver diseases,with markedly increased prevalence.However,its mechanisms are not clear.The present study was undertaken to illustrate the role of caveolin-1(cav1)and the scavenger receptor class B type 1(SR-B1)in NAFLD.METHODS:Adult male C57BL/6 mice were fed with a normal diet or high fat and cholesterol(HFC)diet for 14 weeks.The mice were sacrificed to collect plasma and harvest the liver;their plasma lipid concentration was measured.Hepatic cav1and SR-B1 mRNA and protein expression were determined by real-time quantitative polymerase chain reaction(qPCR)and Western blotting,respectively.In order to study cav1 and SR-B1distribution and change in hepatocytes,immunohistochemical analysis was performed.RESULTS:HFC diet increased plasma lipids,induced NAFLD and increased the liver/body weight ratio.Compared to the control mice(n=6),the mRNA and protein levels of cav1 and SR-B1 in liver tissue of the NAFLD mice(n=12)increased significantly(cav1 mRNA:1.536±0.226 vs 0.980±0.272,P【0.05;protein:0.643±0.240 vs 0.100±0.130,P【0.01;SR-B1 mRNA:1.377±0.125 vs 0.956±0.151,P【0.01;protein:2.156±0.507vs 0.211±0.211,P【0.01).Furthermore,both cav1 and SR-B1immunoreactivity increased and their distribution was also changed,mainly in the plasma membrane of hepatocytes,cytoplasm and membrane of lipid droplets and around.CONCLUSION:NAFLD is associated with increased concentration of plasma lipids and upregulation of hepatic cav1 and SR-B1 gene and protein expressions,which indicate that cav1 and SR-B1 might play crucial roles in the pathogenesis of NAFLD.
基金Supported by National Key R&D Program of China No.2017YFC0908900National Key Basic Research Project,No.2012CB517501National Natural Science Foundation of China,No.81470840 and No.81600464
文摘AIM To evaluate the levels of mi R-192-5 p in non-alcoholic fatty liver disease(NAFLD) models and demonstrate the role of mi R-192-5 p in lipid accumulation. METHODS Thirty Sprague Dawley rats were randomly divided into three groups, which were given a standard diet, a high-fat diet(HFD), and an HFD with injection of liraglutide. At the end of 16 weeks, hepatic mi R-192-5 p and stearoyl-Co A desaturase 1(SCD-1) levels were measured. Mi R-192-5 p mimic and inhibitor and SCD-1 si RNA were transfected into Huh7 cells exposed to palmitic acid(PA). Lipid accumulation was evaluated by oil red O staining and triglyceride assays. Direct interaction was validated by dual-luciferase reporter gene assays.RESULTS The HFD rats showed a 0.46-fold decrease and a 3.5-fold increase in hepatic mi R-192-5 p and SCD-1 protein levels compared with controls, respectively, which could be reversed after disease remission by liraglutide injection(P < 0.01). The Huh7 cells exposed to PA also showed down-regulation and up-regulation of mi R-192-5 p and SCD-1 protein levels, respectively(P < 0.01). Transfection with mi R-192-5 p mimic and inhibitor in Huh7 cells induced dramatic repression and promotion of SCD-1 protein levels, respectively(P < 0.01). Luciferase activity was suppressed and enhanced by mi R-192-5 p mimic and inhibitor, respectively, in wild-type SCD-1(P < 0.01) but not in mutant SCD-1. Mi R-192-5 p overexpression reduced lipid accumulation significantly in PA-treated Huh7 cells, and SCD-1 si RNA transfection abrogated the lipid deposition aggravated by mi R-192-5 p inhibitor(P < 0.01).CONCLUSION This study demonstrates that mi R-192-5 p has a negative regulatory role in lipid synthesis, which is mediated through its direct regulation of SCD-1.
文摘目的:研究高脂高胆固醇饮食(Paigen饮食)是否可以导致C57BL/6J小鼠肺组织的脂质蓄积。方法:66只C57BL/6J雄性6~8周龄小鼠随机分为2组,分别喂饲普通饮食和Paigen饮食,于喂养12、16、20周3个时间点,取主动脉做冰冻切片,油红O染色观察粥样硬化斑块形成情况;肺组织冰冻切片油红O染色,观察肺组织脂质蓄积情况;体外培养A549细胞观察用不同浓度低密度脂蛋白(Low density lipoprotein,LDL)处理后,A549细胞内脂质蓄积情况。结果:Paigen饮食可导致C57BL/6J小鼠主动脉粥样硬化;同时,不同时间点C57BL/6J小鼠肺组织油红O染色结果提示该饮食还可以导致C57BL/6J小鼠肺组织出现脂质蓄积,并随着时间延长而加剧;不同浓度LDL刺激A549细胞的油红O染色结果提示:A549细胞的脂质蓄积与LDL处理的浓度间存在剂量效应关系。结论:Paigen饮食可以导致C57BL/6J小鼠肺脏出现时间依赖性的脂质蓄积,其机制可能与肺泡Ⅱ型上皮细胞的脂质代谢异常有关。