This paper briefly summarizes the development of magnetic resonance imaging and spectroscopy in medicine.Aspects of magnetic resonancephysics and-technology relevant at ultra-high magnetic fields as well as current li...This paper briefly summarizes the development of magnetic resonance imaging and spectroscopy in medicine.Aspects of magnetic resonancephysics and-technology relevant at ultra-high magnetic fields as well as current limitations are highlighted.Based on the first promising studies,potential clinical applications at 7 Tesla are suggested.Other aims are to stimulate awareness of the potential of ultra-high field magnetic resonance and to stimulate active participation in much needed basic or clinical research at 7 Tesla or higher.展开更多
Two-dimensional double nanoparticle (DNP) arrays are demonstrated theoretically, supporting the interaction between out-of-plane magnetic plasmons and in-plane lattice resonances, which can be achieved by tuning the...Two-dimensional double nanoparticle (DNP) arrays are demonstrated theoretically, supporting the interaction between out-of-plane magnetic plasmons and in-plane lattice resonances, which can be achieved by tuning the nanoparticle height or the array period due to the height-dependent magnetic resonance and the periodicity-dependent lattice resonance. The interplay between the two plasmon modes can lead to a remarkable change in resonance lineshape and an improvement on magnetic field enhancement. Simultaneous electric field and magnetic field enhancement can be obtained in the gap region between neighboring particles at two resonance frequencies as the interplay occurs, which presents “open” cavities as electromagnetic field hot spots for potential applications on detection and sensing. The results not only offer an attractive way to tune the optical responses of plasmonic nanostructure, but also provide further insight into the plasmon interactions in periodic nanostructure or metamaterials comprising multiple elements.展开更多
The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with un...The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with unique mechanical properties was extensively explored in high frequency devices.Herein,we report the characteristics of structure and magnetic properties at high frequency of Co2FeAl thin film with different thicknesses grown on flexible graphene substrate at room temperature.The exciting finding for the columnar structure of Co2FeAl thin film lays the foundation for excellent high frequency property of Co2FeAl/flexible graphene structure.In-plane magnetic anisotropy field varying with increasing thickness of Co2FeAl thin film can be obtained by measurement of ferromagnetic resonance,which can be ascribed to the enhancement of crystallinity and the increase of grain size.Meanwhile,the resonance frequency which can be achieved by the measurement of vector network analyzer with the microstrip method increases with increasing thickness of Co2FeAl thin film.Moreover,in our case with graphene film,the resonance magnetic field is quite stable though folded for twenty cycles,which demonstrates that good flexibility of graphene film and the stability of high frequency magnetic property of Co2FeAl thin film grown on flexible graphene substrate.These results are promising for the design of microwave devices and wireless communication equipment.展开更多
Carbon capture,utilization and storage (CCUS) is considered as a very important technology for mitigating global climate change.Carbon dioxide (CO2) injected into an underground reservoir will induce changes in its ph...Carbon capture,utilization and storage (CCUS) is considered as a very important technology for mitigating global climate change.Carbon dioxide (CO2) injected into an underground reservoir will induce changes in its physical properties and the migration of CO2 will be affected by many factors.Accurately understanding these changes and migration characteristics of CO2 is crucial for selecting a CCUS project site,estimating storage capacity and ensuring storage security.In this paper,the basic principles of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) technologies are briefly introduced in the context of laboratory experiments related to CCUS.The types of NMR apparatus,experimental samples and testing approaches applied worldwide are discussed and analyzed.Then two typical NMR core analysis systems used in CCUS field and a self-developed high-pressure,low-field NMR rock core flooding experimental system are compared.Finally,a summary of the current deficiencies related to NMR applied to CCUS field is given and future research plans are proposed.展开更多
Nuclear magnetic resonance (NMR) is one of the most powerful tools to explore new quantum states of condensed matter induced by high magnetic fields at a microscopic level. High magnetic field enhances the intensity...Nuclear magnetic resonance (NMR) is one of the most powerful tools to explore new quantum states of condensed matter induced by high magnetic fields at a microscopic level. High magnetic field enhances the intensity of the NMR signal, and more importantly, can induce novel phenomena. In this article, examples are given on the field-induced charge density wave (CDW) in high-To superconductors and on the studies of quantum spin liquids. We provide a brief introduction to the high magnetic field NMR platform, the station 4 of the Synergetic Extreme Condition User Facility (SECUF), being built at Huairou, Beijing.展开更多
AIM: To investigate the normal hepatic magnetic resonance spectroscopy findings choline/lipid2 (Cho/Lip2) associated with age and body mass index (BMI).METHODS: A total of 58 single-voxel proton spectra of the liver w...AIM: To investigate the normal hepatic magnetic resonance spectroscopy findings choline/lipid2 (Cho/Lip2) associated with age and body mass index (BMI).METHODS: A total of 58 single-voxel proton spectra of the liver were acquired at 3.0 T using the eightchannel phased array abdominal coil as the receiver coil. Consecutive stacks of breath-hold spectra were acquired using the point resolved spectroscopy technique at a short echo time of 30 ms and a repetition time of 1500 ms. The spectra were processed with the SAGE software package. Areas and heights for metabolite resonance were obtained. Student's t test for unpaired data was used for comparisons of shimming, Cho/Lip2, and lipid content. RESULTS: There were significant negative correlations between the Cho/Lip2 peak height ratios and BMI (r=-0.615) and age (r=-0.398) (all P<0.01). Compared with the high-BMI group, the low-BMI group was younger (39.1±13.0 years vs 47.6±8.5 years, t=-2.954,P=0.005); had better water suppression (93.4%±1.4% vs 85.6%±11.6%, t=2.741, P=0.014); had higher Cho/Lip2 peak heights ratio (0.2±0.14 vs 0.05±0.04,t=6.033,P<0.000); and had lower lipid content (0.03±0.08 vs 0.29±0.31, t=-3.309, P=0.004). Compared with the older group, the younger group had better shimming effects (17.1±3.6 Hz vs 22.0±6.8 Hz, t=-2.919, P=0.008); higher Cho/Lip2 peak heights ratios (0.03±0.05vs 0.09±0.12,t=2.4, P=0.020); and lower lipid content (0.05±0.11 vs 0.23±0.32,t=-2.337,P=0.031). Compared with the lowcholine peak group, the high-choline peak group had lower lipid content (0.005±0.002 vs 0.13±0.23, t=-3.796,P<0.000); lower BMI (19.6±2.4vs 23.9±3.0, t=-4.410, P<0.000); and younger age (34.7±10.0 years vs 43.2±12.5 years, t=-2.088, P=0.041). CONCLUSION: Lipid accumulation could result from the increased fat in the body depending on age and BMI. Lipid can mask the resonance signal of choline.展开更多
3.0T magnetic resonance spectroscopic imaging brain function in Alzheimer's disease. However, is a commonly used method in the research ot the role of 7.0T high-field magnetic resonance spectroscopic imaging in brain...3.0T magnetic resonance spectroscopic imaging brain function in Alzheimer's disease. However, is a commonly used method in the research ot the role of 7.0T high-field magnetic resonance spectroscopic imaging in brain function of Alzheimer's disease remains unclear. In this study, 7.0T magnetic resonance spectroscopy showed that in the hippocampus of Alzheimer's disease rats, the N-acetylaspartate wave crest was reduced, and the creatine and choline wave crest was elevated. This finding was further supported by hematoxylin-eosin staining, which showed a loss of hippocampal neurons and more glial cells. Moreover, electron microscopy showed neuronal shrinkage and mitochondrial rupture, and scanning electron microscopy revealed small size hippocampal synaptic vesicles, incomplete synaptic structure, and reduced number. Overall, the results revealed that 7.0T high-field nuclear magnetic resonance spectroscopy detected the lesions and functional changes in hippocampal neurons of Alzheimer's disease rats in vivo, allowing the possibility for assessing the success rate and grading of the amyloid beta (1-40) animal model of Alzheimer's disease.展开更多
缺血性脑卒中的病因分型对临床治疗决策和预后判断有重要价值。近年来,随着高分辨率磁共振血管壁成像(high-resolution vessel wall magnetic resonance imaging,HR-VW-MRI)在脑卒中临床研究和实践中的应用增加,7 T MRI以其更高信噪比...缺血性脑卒中的病因分型对临床治疗决策和预后判断有重要价值。近年来,随着高分辨率磁共振血管壁成像(high-resolution vessel wall magnetic resonance imaging,HR-VW-MRI)在脑卒中临床研究和实践中的应用增加,7 T MRI以其更高信噪比和更优图像质量,可发现脑血管早期、细微的病理变化,为深入了解各种脑血管疾病的病理机制提供了新思路。然而,超高场强也存在B1场不均、扫描时间长等技术挑战。本文就7 T HR-VW-MRI在缺血性卒中病因分型及临床应用中的进展进行综述,深入分析7 T HR-VW-MRI在提升临床诊断精确性与指导临床治疗中的潜在价值,为临床实践与科研探索提供参考。展开更多
Chiral metamaterials have been a topic of significant research interest in recent years due to their potential for various applications in nanophotonic devices and chiral biosensors.However,the intrinsic Ohmic loss in...Chiral metamaterials have been a topic of significant research interest in recent years due to their potential for various applications in nanophotonic devices and chiral biosensors.However,the intrinsic Ohmic loss in surface plasmonic resonance has limited their practical use,resulting in large light dissipation and weak chiroptical resonance.Here,we report on the development of high-performance dielectric chiral shells(DCS)through a two-step Si deposition process on a self-assembled microsphere monolayer.The form DCS sample completely oyercomes the cancelation effect originated from the disorder property of the micro-sphere monolayer in macroscale,and at a wavelength of approximately 710 nm,the measured optimal chiral signal(g-factor)and transmittance can reach up to 0.7 and 0.3,respectively.The strong chiroptical effect comes from the asymmetric circular displacement currents(i.e.,magnetic modes)enabled by the specific shell geometry.The chiral shell geometry,electromagnetic properties,sensor sensitivity of chiral molecules and figure of merit are systematically investigated.The DCSs demonstrate highly sensitive detection of chiral biomolecules owing to their easily accessible geometry and enhanced uniform chiral field.展开更多
超高场磁共振(ultra-high-field magnetic resonance,UHF-MR)对疾病诊断和细微结构显示一直是临床研究热点。但由于其固有特性,7 T UHF-MR的研究目前主要集中在中枢神经及部分骨肌系统疾病中。而5 T UHF-MR的问世,似乎为骨肌及全身系统...超高场磁共振(ultra-high-field magnetic resonance,UHF-MR)对疾病诊断和细微结构显示一直是临床研究热点。但由于其固有特性,7 T UHF-MR的研究目前主要集中在中枢神经及部分骨肌系统疾病中。而5 T UHF-MR的问世,似乎为骨肌及全身系统的超高场成像带来了新的可能性。本文重点对UHF-MR的固有物理特性对骨肌系统疾病诊断的影响及UHF-MR在骨肌系统疾病中的临床研究进展展开综述,旨在增强医师对UHF-MR的了解,拓宽研究者的思路,进一步推动新型对比剂的开发、多模态成像技术的应用以及人工智能辅助诊断的结合,促进UHF-MR在骨肌系统疾病中的临床转化及应用。展开更多
文摘This paper briefly summarizes the development of magnetic resonance imaging and spectroscopy in medicine.Aspects of magnetic resonancephysics and-technology relevant at ultra-high magnetic fields as well as current limitations are highlighted.Based on the first promising studies,potential clinical applications at 7 Tesla are suggested.Other aims are to stimulate awareness of the potential of ultra-high field magnetic resonance and to stimulate active participation in much needed basic or clinical research at 7 Tesla or higher.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10974183,11104252,61274012,and 51072184)the Specialized Re-search Fund for the Doctoral Program of Higher Education of China(Grant No.20114101110003)+4 种基金the Aeronautical Science Foundation of China(Grant No.2011ZF55015)the Basic and Frontier Technology Research Program of Henan Province,China(Grant Nos.112300410264 and 122300410162)the Foundation of University Young Key Teacher from Henan Province,China(Grant No.2012GGJS-146)the Key Program of Science and Technology of Henan Education Department,China(Grant Nos.12A140014 and 13A140693)the Postdoctoral Research Sponsorship of Henan Province,China(Grant No.2011002)
文摘Two-dimensional double nanoparticle (DNP) arrays are demonstrated theoretically, supporting the interaction between out-of-plane magnetic plasmons and in-plane lattice resonances, which can be achieved by tuning the nanoparticle height or the array period due to the height-dependent magnetic resonance and the periodicity-dependent lattice resonance. The interplay between the two plasmon modes can lead to a remarkable change in resonance lineshape and an improvement on magnetic field enhancement. Simultaneous electric field and magnetic field enhancement can be obtained in the gap region between neighboring particles at two resonance frequencies as the interplay occurs, which presents “open” cavities as electromagnetic field hot spots for potential applications on detection and sensing. The results not only offer an attractive way to tune the optical responses of plasmonic nanostructure, but also provide further insight into the plasmon interactions in periodic nanostructure or metamaterials comprising multiple elements.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51901163 and 12104171)the Fundamental Research Funds for the Central Universities(Grant No.2021XXJS025).
文摘The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with unique mechanical properties was extensively explored in high frequency devices.Herein,we report the characteristics of structure and magnetic properties at high frequency of Co2FeAl thin film with different thicknesses grown on flexible graphene substrate at room temperature.The exciting finding for the columnar structure of Co2FeAl thin film lays the foundation for excellent high frequency property of Co2FeAl/flexible graphene structure.In-plane magnetic anisotropy field varying with increasing thickness of Co2FeAl thin film can be obtained by measurement of ferromagnetic resonance,which can be ascribed to the enhancement of crystallinity and the increase of grain size.Meanwhile,the resonance frequency which can be achieved by the measurement of vector network analyzer with the microstrip method increases with increasing thickness of Co2FeAl thin film.Moreover,in our case with graphene film,the resonance magnetic field is quite stable though folded for twenty cycles,which demonstrates that good flexibility of graphene film and the stability of high frequency magnetic property of Co2FeAl thin film grown on flexible graphene substrate.These results are promising for the design of microwave devices and wireless communication equipment.
基金supported by the Open Research Fund of State Key Laboratory of Geomechanics and GeotechnicalEngineering, IRSM, CAS (Grant No. Z017002)the National Natural Science Foundation of China (Grant Nos. 41872210 and 41274111)financial support from the China-Australia Geological Storage of CO_2 (CAGS) Project funded by the Australian Government under the auspices of the China-Australia Joint Coordination Group on Clean Coal Technology
文摘Carbon capture,utilization and storage (CCUS) is considered as a very important technology for mitigating global climate change.Carbon dioxide (CO2) injected into an underground reservoir will induce changes in its physical properties and the migration of CO2 will be affected by many factors.Accurately understanding these changes and migration characteristics of CO2 is crucial for selecting a CCUS project site,estimating storage capacity and ensuring storage security.In this paper,the basic principles of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) technologies are briefly introduced in the context of laboratory experiments related to CCUS.The types of NMR apparatus,experimental samples and testing approaches applied worldwide are discussed and analyzed.Then two typical NMR core analysis systems used in CCUS field and a self-developed high-pressure,low-field NMR rock core flooding experimental system are compared.Finally,a summary of the current deficiencies related to NMR applied to CCUS field is given and future research plans are proposed.
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB07020200)the National Key Research and Development Program of China(Grant Nos.2016YFA0300502 and 2015CB921304)the National Natural Science Foundation of China(Grant No.11634015)
文摘Nuclear magnetic resonance (NMR) is one of the most powerful tools to explore new quantum states of condensed matter induced by high magnetic fields at a microscopic level. High magnetic field enhances the intensity of the NMR signal, and more importantly, can induce novel phenomena. In this article, examples are given on the field-induced charge density wave (CDW) in high-To superconductors and on the studies of quantum spin liquids. We provide a brief introduction to the high magnetic field NMR platform, the station 4 of the Synergetic Extreme Condition User Facility (SECUF), being built at Huairou, Beijing.
基金Supported by The Science Foundation of Guangdong Province for Dr. Startup Project, No. S2012040006618Postdoctoral Fund of Guangzhou University of Traditional Chinese Medicine,No. 20120621+2 种基金Traditional Chinese Medicine and Integration of Traditional Chinese and Western Medicine Research Project of Guangzhou, No. 20122A011032The National Natural Science Foundation of China, No. 30700184, 61172034, 81271654,81271569 and 81171329Science and Technology Planning Project of Guangdong Province, China, No. 2008B080703041,2010B080701025 and 2011B031700014
文摘AIM: To investigate the normal hepatic magnetic resonance spectroscopy findings choline/lipid2 (Cho/Lip2) associated with age and body mass index (BMI).METHODS: A total of 58 single-voxel proton spectra of the liver were acquired at 3.0 T using the eightchannel phased array abdominal coil as the receiver coil. Consecutive stacks of breath-hold spectra were acquired using the point resolved spectroscopy technique at a short echo time of 30 ms and a repetition time of 1500 ms. The spectra were processed with the SAGE software package. Areas and heights for metabolite resonance were obtained. Student's t test for unpaired data was used for comparisons of shimming, Cho/Lip2, and lipid content. RESULTS: There were significant negative correlations between the Cho/Lip2 peak height ratios and BMI (r=-0.615) and age (r=-0.398) (all P<0.01). Compared with the high-BMI group, the low-BMI group was younger (39.1±13.0 years vs 47.6±8.5 years, t=-2.954,P=0.005); had better water suppression (93.4%±1.4% vs 85.6%±11.6%, t=2.741, P=0.014); had higher Cho/Lip2 peak heights ratio (0.2±0.14 vs 0.05±0.04,t=6.033,P<0.000); and had lower lipid content (0.03±0.08 vs 0.29±0.31, t=-3.309, P=0.004). Compared with the older group, the younger group had better shimming effects (17.1±3.6 Hz vs 22.0±6.8 Hz, t=-2.919, P=0.008); higher Cho/Lip2 peak heights ratios (0.03±0.05vs 0.09±0.12,t=2.4, P=0.020); and lower lipid content (0.05±0.11 vs 0.23±0.32,t=-2.337,P=0.031). Compared with the lowcholine peak group, the high-choline peak group had lower lipid content (0.005±0.002 vs 0.13±0.23, t=-3.796,P<0.000); lower BMI (19.6±2.4vs 23.9±3.0, t=-4.410, P<0.000); and younger age (34.7±10.0 years vs 43.2±12.5 years, t=-2.088, P=0.041). CONCLUSION: Lipid accumulation could result from the increased fat in the body depending on age and BMI. Lipid can mask the resonance signal of choline.
基金supported by the National Natural Science Foundation of China,No.81141013a grant for Talents in Beijing,No.2011D003034000019
文摘3.0T magnetic resonance spectroscopic imaging brain function in Alzheimer's disease. However, is a commonly used method in the research ot the role of 7.0T high-field magnetic resonance spectroscopic imaging in brain function of Alzheimer's disease remains unclear. In this study, 7.0T magnetic resonance spectroscopy showed that in the hippocampus of Alzheimer's disease rats, the N-acetylaspartate wave crest was reduced, and the creatine and choline wave crest was elevated. This finding was further supported by hematoxylin-eosin staining, which showed a loss of hippocampal neurons and more glial cells. Moreover, electron microscopy showed neuronal shrinkage and mitochondrial rupture, and scanning electron microscopy revealed small size hippocampal synaptic vesicles, incomplete synaptic structure, and reduced number. Overall, the results revealed that 7.0T high-field nuclear magnetic resonance spectroscopy detected the lesions and functional changes in hippocampal neurons of Alzheimer's disease rats in vivo, allowing the possibility for assessing the success rate and grading of the amyloid beta (1-40) animal model of Alzheimer's disease.
文摘缺血性脑卒中的病因分型对临床治疗决策和预后判断有重要价值。近年来,随着高分辨率磁共振血管壁成像(high-resolution vessel wall magnetic resonance imaging,HR-VW-MRI)在脑卒中临床研究和实践中的应用增加,7 T MRI以其更高信噪比和更优图像质量,可发现脑血管早期、细微的病理变化,为深入了解各种脑血管疾病的病理机制提供了新思路。然而,超高场强也存在B1场不均、扫描时间长等技术挑战。本文就7 T HR-VW-MRI在缺血性卒中病因分型及临床应用中的进展进行综述,深入分析7 T HR-VW-MRI在提升临床诊断精确性与指导临床治疗中的潜在价值,为临床实践与科研探索提供参考。
基金financially supported by the National Natural Science Foundation of China(No.11604227)International Visiting Program for Excellent Young Scholars of SCU(No.20181504)International Science and Technology Innovation Cooperation of Sichuan Province(No.21GJHZ0230)。
文摘Chiral metamaterials have been a topic of significant research interest in recent years due to their potential for various applications in nanophotonic devices and chiral biosensors.However,the intrinsic Ohmic loss in surface plasmonic resonance has limited their practical use,resulting in large light dissipation and weak chiroptical resonance.Here,we report on the development of high-performance dielectric chiral shells(DCS)through a two-step Si deposition process on a self-assembled microsphere monolayer.The form DCS sample completely oyercomes the cancelation effect originated from the disorder property of the micro-sphere monolayer in macroscale,and at a wavelength of approximately 710 nm,the measured optimal chiral signal(g-factor)and transmittance can reach up to 0.7 and 0.3,respectively.The strong chiroptical effect comes from the asymmetric circular displacement currents(i.e.,magnetic modes)enabled by the specific shell geometry.The chiral shell geometry,electromagnetic properties,sensor sensitivity of chiral molecules and figure of merit are systematically investigated.The DCSs demonstrate highly sensitive detection of chiral biomolecules owing to their easily accessible geometry and enhanced uniform chiral field.
文摘超高场磁共振(ultra-high-field magnetic resonance,UHF-MR)对疾病诊断和细微结构显示一直是临床研究热点。但由于其固有特性,7 T UHF-MR的研究目前主要集中在中枢神经及部分骨肌系统疾病中。而5 T UHF-MR的问世,似乎为骨肌及全身系统的超高场成像带来了新的可能性。本文重点对UHF-MR的固有物理特性对骨肌系统疾病诊断的影响及UHF-MR在骨肌系统疾病中的临床研究进展展开综述,旨在增强医师对UHF-MR的了解,拓宽研究者的思路,进一步推动新型对比剂的开发、多模态成像技术的应用以及人工智能辅助诊断的结合,促进UHF-MR在骨肌系统疾病中的临床转化及应用。