The folded double-ridged waveguide structure is presented and its properties used for wide-band traveling-wave tube are investigated. Expressions of dispersion characteristics, normalized phase velocity and interactio...The folded double-ridged waveguide structure is presented and its properties used for wide-band traveling-wave tube are investigated. Expressions of dispersion characteristics, normalized phase velocity and interaction impedance of this structure are derived and numerically calculated. The calculated results using our theory agree well with those obtained by using the 3D electromagnetic simulation software HFSS. Influences of the ridge-loaded area and broad-wall dimensions on the high frequency characteristics of the novel slow-wave structure are discussed. It is shown that the folded double-ridged waveguide structure has a much wider relative passband than the folded waveguide slow-wave structure and a relative passband of 67% could be obtained, indicating that this structure can operate in broad-band frequency ranges of beam-wave interaction. The small signal gain property is investigated for ensuring the improvement of bandwidth. Meanwhile, with comparable dispersion characteristics, the transverse section dimension of this novel structure is much smaller than that of conventional one, which indicates an available way to reduce the weight of traveling-wave tube.展开更多
The Zagros fold-thrust belt in Iran is home to one of the enormous petroleum producing reservoirs in the word. The Tabnak gas field in this belt is one of the enormous sweet gas fields that discovered on the land. Thi...The Zagros fold-thrust belt in Iran is home to one of the enormous petroleum producing reservoirs in the word. The Tabnak gas field in this belt is one of the enormous sweet gas fields that discovered on the land. This anticlinal structure is located in the Coastal Fars sub-basin and is bounded from North by the Varavi gas field, from South by the Kuh-e Madar anticline, from East by Assaluyeh gas field and from West by Kuh-e Dehnow anticline. Its length is about 80 km and width is about 15 km. This structure is asymmetric anticline and is located with irregular near the Assaluyeh gas field. The Tabnak gas field is deepest structure between anticlines in the Coastal Fars area. This gas field has a special place for accommodating the enormous Hydrocarbon resources and for this reason, it is very important for Iran country. In this structure, the Dashtak, Kangan and upper Dalan Formations have Hydrocarbon. Analysis and description of fold style elements are essential for structural studies. Based on this case, the comparison of the fold styles and folding mechanism is possible. The main aim in this research is the analysis of the fold style elements of the Tabnak anticline for determining the folding pattern and tectonic regime on this structure. This case has very important for Hydrocarbon exploration between gas fields in the Fars area. In this research, we used the Tectonics FP software, Global Mapper software and geological maps and reports of Iranian National Oil Company. In addition, we used common classification of fold for indicating folding mechanism of the Tabnak anticlinal structure. Based on analysis of the fold style elements, the Tabnak anticlinal structure has variation in fold style. This structure has three different fold styles in different parts. The changes of fold axis, axial plane characteristics and fold classification confirmed several fold styles in different parts of the Tabnak anticline. These changes are observed specially in B-B', F-F' and G-G' sections of this anticline. It seems that these parts have been suffered more deformation in the study anticline. In addition, based on interlimb and folding angle, fold type is close type in all of parts. The close type required more accuracy, because the close type may be ensigns of complication regime. In the study area, G-G' and F-F' section of the Tabnak gas field probable show folding style changes have been affected by Gavbandy Paleo-high.展开更多
为了探究折叶片旋流泵固液两相输送机理,基于CFD-DEM(Computational fluid dynamics-discrete element method)耦合算法,选用油菜籽和黄豆颗粒等比例混合,在不同流量工况和体积分数下对旋流泵进行固液两相流数值模拟和试验研究。同时也...为了探究折叶片旋流泵固液两相输送机理,基于CFD-DEM(Computational fluid dynamics-discrete element method)耦合算法,选用油菜籽和黄豆颗粒等比例混合,在不同流量工况和体积分数下对旋流泵进行固液两相流数值模拟和试验研究。同时也研究了折叶片旋流泵内部流动规律及颗粒分布特征。小流量工况下,进口管内螺旋回流长度较长,对进口来流扰动较大。随着流量增大,进口管回流长度逐渐缩短。叶轮前端面旋涡随流量增大,数量先增加后减少,且逐渐向折点方向聚拢。泵内颗粒受循环流和贯通流的共同作用,进口管中心部颗粒主要受贯通流影响,直接穿过无叶腔,冲击叶轮进口;靠近管壁的颗粒受循环流影响较大。无叶腔内颗粒分布呈现出:中心部最高,中间部随外径增大浓度逐渐降低,外缘部浓度稍有上升。叶轮前半部颗粒数量明显少于叶轮后半部,颗粒沿叶片第1段折边运动,在折点处开始发生分离,不再跟随第2段折边。不同工况下,泵进口有不同程度的螺旋回流现象,导致进口过流面积减小。循环流的存在,使得无叶腔和进口管的颗粒充分旋起,泵送能力增强,不易发生堵塞。展开更多
The main targets of seismic exploration research in Leijia carbonatite tight sandstone oil area of Liaohe depression are thin reservoirs prediction and minor faults identification, which is one of the important repres...The main targets of seismic exploration research in Leijia carbonatite tight sandstone oil area of Liaohe depression are thin reservoirs prediction and minor faults identification, which is one of the important representatives of complex exploration objects in Liaohe depression. High precision 3D seismic exploration has significantly improved the ability of thin reservoirs prediction and minor faults identification of this area. Reducing the cost of high precision 3D seismic exploration through optimizing the acquisition parameters is very important for the next step exploration and development of Liaohe depression and similar areas. Based on high precision 3D seismic acquisition data in Leijia tight sandstone oil area, multiple sub-geometries are obtained with different bin sizes, different folds, different aspect ratio, different line intervals by extracting receiver points and shot points, and PSTM processing is performed respectively, obtained PSTM datasets of the sub-geometries, extract time slices, amplitude slices along the layer, coherent slices and so on. We evaluate the data results of the sub-geometries from the aspects of signal-to-noise ratio, thin reservoirs resolution, acquisition footprint and so on. Considering the exploration cost and data effect of each sub-geometry, the optimal direction of the main parameters of high precision seismic exploration in Liaohe depression is put forward, and the acquisition effect of adjacent area by the optimized parameters is given.展开更多
基金Project supported in part by the National Natural Science Foundation of China (Grant No. 60971038)in part by the Fundamental Research Funds for Central Universities,China (Grant No. ZYGX2009Z003)
文摘The folded double-ridged waveguide structure is presented and its properties used for wide-band traveling-wave tube are investigated. Expressions of dispersion characteristics, normalized phase velocity and interaction impedance of this structure are derived and numerically calculated. The calculated results using our theory agree well with those obtained by using the 3D electromagnetic simulation software HFSS. Influences of the ridge-loaded area and broad-wall dimensions on the high frequency characteristics of the novel slow-wave structure are discussed. It is shown that the folded double-ridged waveguide structure has a much wider relative passband than the folded waveguide slow-wave structure and a relative passband of 67% could be obtained, indicating that this structure can operate in broad-band frequency ranges of beam-wave interaction. The small signal gain property is investigated for ensuring the improvement of bandwidth. Meanwhile, with comparable dispersion characteristics, the transverse section dimension of this novel structure is much smaller than that of conventional one, which indicates an available way to reduce the weight of traveling-wave tube.
文摘The Zagros fold-thrust belt in Iran is home to one of the enormous petroleum producing reservoirs in the word. The Tabnak gas field in this belt is one of the enormous sweet gas fields that discovered on the land. This anticlinal structure is located in the Coastal Fars sub-basin and is bounded from North by the Varavi gas field, from South by the Kuh-e Madar anticline, from East by Assaluyeh gas field and from West by Kuh-e Dehnow anticline. Its length is about 80 km and width is about 15 km. This structure is asymmetric anticline and is located with irregular near the Assaluyeh gas field. The Tabnak gas field is deepest structure between anticlines in the Coastal Fars area. This gas field has a special place for accommodating the enormous Hydrocarbon resources and for this reason, it is very important for Iran country. In this structure, the Dashtak, Kangan and upper Dalan Formations have Hydrocarbon. Analysis and description of fold style elements are essential for structural studies. Based on this case, the comparison of the fold styles and folding mechanism is possible. The main aim in this research is the analysis of the fold style elements of the Tabnak anticline for determining the folding pattern and tectonic regime on this structure. This case has very important for Hydrocarbon exploration between gas fields in the Fars area. In this research, we used the Tectonics FP software, Global Mapper software and geological maps and reports of Iranian National Oil Company. In addition, we used common classification of fold for indicating folding mechanism of the Tabnak anticlinal structure. Based on analysis of the fold style elements, the Tabnak anticlinal structure has variation in fold style. This structure has three different fold styles in different parts. The changes of fold axis, axial plane characteristics and fold classification confirmed several fold styles in different parts of the Tabnak anticline. These changes are observed specially in B-B', F-F' and G-G' sections of this anticline. It seems that these parts have been suffered more deformation in the study anticline. In addition, based on interlimb and folding angle, fold type is close type in all of parts. The close type required more accuracy, because the close type may be ensigns of complication regime. In the study area, G-G' and F-F' section of the Tabnak gas field probable show folding style changes have been affected by Gavbandy Paleo-high.
文摘为了探究折叶片旋流泵固液两相输送机理,基于CFD-DEM(Computational fluid dynamics-discrete element method)耦合算法,选用油菜籽和黄豆颗粒等比例混合,在不同流量工况和体积分数下对旋流泵进行固液两相流数值模拟和试验研究。同时也研究了折叶片旋流泵内部流动规律及颗粒分布特征。小流量工况下,进口管内螺旋回流长度较长,对进口来流扰动较大。随着流量增大,进口管回流长度逐渐缩短。叶轮前端面旋涡随流量增大,数量先增加后减少,且逐渐向折点方向聚拢。泵内颗粒受循环流和贯通流的共同作用,进口管中心部颗粒主要受贯通流影响,直接穿过无叶腔,冲击叶轮进口;靠近管壁的颗粒受循环流影响较大。无叶腔内颗粒分布呈现出:中心部最高,中间部随外径增大浓度逐渐降低,外缘部浓度稍有上升。叶轮前半部颗粒数量明显少于叶轮后半部,颗粒沿叶片第1段折边运动,在折点处开始发生分离,不再跟随第2段折边。不同工况下,泵进口有不同程度的螺旋回流现象,导致进口过流面积减小。循环流的存在,使得无叶腔和进口管的颗粒充分旋起,泵送能力增强,不易发生堵塞。
文摘The main targets of seismic exploration research in Leijia carbonatite tight sandstone oil area of Liaohe depression are thin reservoirs prediction and minor faults identification, which is one of the important representatives of complex exploration objects in Liaohe depression. High precision 3D seismic exploration has significantly improved the ability of thin reservoirs prediction and minor faults identification of this area. Reducing the cost of high precision 3D seismic exploration through optimizing the acquisition parameters is very important for the next step exploration and development of Liaohe depression and similar areas. Based on high precision 3D seismic acquisition data in Leijia tight sandstone oil area, multiple sub-geometries are obtained with different bin sizes, different folds, different aspect ratio, different line intervals by extracting receiver points and shot points, and PSTM processing is performed respectively, obtained PSTM datasets of the sub-geometries, extract time slices, amplitude slices along the layer, coherent slices and so on. We evaluate the data results of the sub-geometries from the aspects of signal-to-noise ratio, thin reservoirs resolution, acquisition footprint and so on. Considering the exploration cost and data effect of each sub-geometry, the optimal direction of the main parameters of high precision seismic exploration in Liaohe depression is put forward, and the acquisition effect of adjacent area by the optimized parameters is given.