无励磁分接开关出现放电性故障会严重危害变压器安全运行。介绍了一起500 k V变压器交接试验过程中脉冲局部放电试验异常的案例,应用脉冲电流法、特高频法、超声波法等多维局部放电检测技术进行时差定位,成功诊断了变压器无励磁分接开...无励磁分接开关出现放电性故障会严重危害变压器安全运行。介绍了一起500 k V变压器交接试验过程中脉冲局部放电试验异常的案例,应用脉冲电流法、特高频法、超声波法等多维局部放电检测技术进行时差定位,成功诊断了变压器无励磁分接开关内部异物放电故障;通过材质成分分析判断异物为动触头旋转轴压环的机加工碎屑,异物位于无励磁分接开关动触头旋转轴位置,随挡位切换而移动,导致各个挡位均可检测到局部放电,且脉冲局部放电量随挡位变化而变化。展开更多
We focus on the high frequency current method which is widely applied in the partial discharge(PD)detection of cables.Aiming at guaranteeing the accuracy of this method,we study an innovative time-domain technology fo...We focus on the high frequency current method which is widely applied in the partial discharge(PD)detection of cables.Aiming at guaranteeing the accuracy of this method,we study an innovative time-domain technology for effectively measuring the transfer impedance of the high frequency current transformers(HFCTs).The proposed technology called pulse injection method obtains the system response under the excitation of the wide-band instantaneous pulse signal.Firstly,by studying the working principle of HFCTs,we summarize that the bandwidth of the selected signal acquisition device should be at least 100 MHz to ensure measurement accuracy.Secondly,Gauss pulse and square wave pulse are generated to determine the effects of different sources.The measurement results indicate that Gauss pulse is more suitable for pulse injection method,and the rise time should be under 10 ns to improve the starting frequency of oscillation distortion.Finally,the transfer impedance curves of five types of HFCTs are acquired by both pulse injection and traditional point-frequency methods.The measurement results show a remarkable consistency between two methods.However,pulse injection method requires the simpler operation and lias a higher resolution,obviously improving the measurement efficiency and bet ter displaying the details of the transfer impedance curves.展开更多
为了研究换流站现场干扰信号的抗干扰措施、提高现场局部放电检测的准确性和可靠性,有必要对换流站内的干扰信号进行测量。为此,在±800 k V换流站内采用常规脉冲电流法和特高频法分别测量了阀厅内的干扰信号、交流线路下换流变附...为了研究换流站现场干扰信号的抗干扰措施、提高现场局部放电检测的准确性和可靠性,有必要对换流站内的干扰信号进行测量。为此,在±800 k V换流站内采用常规脉冲电流法和特高频法分别测量了阀厅内的干扰信号、交流线路下换流变附近的干扰信号以及平波电抗器和直流滤波器间的干扰信号,并对现场可能存在的干扰信号进行实验室模拟,以进一步确定换流站内现场干扰信号的类型、来源及特征。测量结果表明:1)检修状态下极Ⅰ低压阀厅内测得的背景噪声主要是一些无线电干扰信号,如GSM制式的手机干扰信号、对讲机干扰信号;2)在交流线路下换流变附近测得的干扰信号主要是周期型的脉冲干扰信号,如高压汞灯产生的干扰信号,该类型的干扰信号散点图在某一固定相位处呈长条状分布;3)当高压线路带有800 k V直流电压时,在平波电抗器和直流滤波器间测得的干扰信号主要由高压直流导线上的电晕放电产生,该放电信号为等幅值的脉冲干扰信号,且随相位均匀分布。展开更多
文摘无励磁分接开关出现放电性故障会严重危害变压器安全运行。介绍了一起500 k V变压器交接试验过程中脉冲局部放电试验异常的案例,应用脉冲电流法、特高频法、超声波法等多维局部放电检测技术进行时差定位,成功诊断了变压器无励磁分接开关内部异物放电故障;通过材质成分分析判断异物为动触头旋转轴压环的机加工碎屑,异物位于无励磁分接开关动触头旋转轴位置,随挡位切换而移动,导致各个挡位均可检测到局部放电,且脉冲局部放电量随挡位变化而变化。
文摘We focus on the high frequency current method which is widely applied in the partial discharge(PD)detection of cables.Aiming at guaranteeing the accuracy of this method,we study an innovative time-domain technology for effectively measuring the transfer impedance of the high frequency current transformers(HFCTs).The proposed technology called pulse injection method obtains the system response under the excitation of the wide-band instantaneous pulse signal.Firstly,by studying the working principle of HFCTs,we summarize that the bandwidth of the selected signal acquisition device should be at least 100 MHz to ensure measurement accuracy.Secondly,Gauss pulse and square wave pulse are generated to determine the effects of different sources.The measurement results indicate that Gauss pulse is more suitable for pulse injection method,and the rise time should be under 10 ns to improve the starting frequency of oscillation distortion.Finally,the transfer impedance curves of five types of HFCTs are acquired by both pulse injection and traditional point-frequency methods.The measurement results show a remarkable consistency between two methods.However,pulse injection method requires the simpler operation and lias a higher resolution,obviously improving the measurement efficiency and bet ter displaying the details of the transfer impedance curves.
文摘为了研究换流站现场干扰信号的抗干扰措施、提高现场局部放电检测的准确性和可靠性,有必要对换流站内的干扰信号进行测量。为此,在±800 k V换流站内采用常规脉冲电流法和特高频法分别测量了阀厅内的干扰信号、交流线路下换流变附近的干扰信号以及平波电抗器和直流滤波器间的干扰信号,并对现场可能存在的干扰信号进行实验室模拟,以进一步确定换流站内现场干扰信号的类型、来源及特征。测量结果表明:1)检修状态下极Ⅰ低压阀厅内测得的背景噪声主要是一些无线电干扰信号,如GSM制式的手机干扰信号、对讲机干扰信号;2)在交流线路下换流变附近测得的干扰信号主要是周期型的脉冲干扰信号,如高压汞灯产生的干扰信号,该类型的干扰信号散点图在某一固定相位处呈长条状分布;3)当高压线路带有800 k V直流电压时,在平波电抗器和直流滤波器间测得的干扰信号主要由高压直流导线上的电晕放电产生,该放电信号为等幅值的脉冲干扰信号,且随相位均匀分布。