High manganese steel has wide prospects in industry due to their excellent mechanical and damping properties. The quenching structures of high manganese steel are ε-martensite, γ-austenite and α'-martensite. Re...High manganese steel has wide prospects in industry due to their excellent mechanical and damping properties. The quenching structures of high manganese steel are ε-martensite, γ-austenite and α'-martensite. Researches show that the damping properties of high manganese steel are related to these microstructures. Besides, there are many ways to improve the damping property of damping alloys. This paper reviews the damping mechanism and the influences of the ad-dition of alloying elements, heat treatment, pre-deformation and other factors on their damping performance, hoping to provide methods and ideas for the study of damping properties of high manganese steel. .展开更多
The influence of high pressure and manganese addition on Fe-rich phases(FRPs)and mechanical properties of Al-14Si-2Fe alloy with rheo-squeeze casting(RSC)was investigated.The semi-solid alloy melt was treated by ultra...The influence of high pressure and manganese addition on Fe-rich phases(FRPs)and mechanical properties of Al-14Si-2Fe alloy with rheo-squeeze casting(RSC)was investigated.The semi-solid alloy melt was treated by ultrasonic vibration(UV)firstly,and then formed by squeeze casting(SC).Results show that the FRPs in as-cast SC alloys are composed of coarseβ-Al5(Fe,Mn)Si,δ-Al4(Fe,Mn)Si2 and bone-shapedα-Al15(Fe,Mn)3Si2 phases when the pressure is 0 MPa.With RSC process,the FRPs are first refined by UV,and then the solidification under pressure further causes the grains to become smaller.The peritectic transformation occurs during the formation ofαphase.For the alloy with the same composition,the ultimate tensile strength(UTS)of RSC sample is higher than that of the SC sample.With the same forming process,the UTS of Al-14Si-2Fe-0.8Mn alloy is higher than that of Al-14Si-2Fe-0.4Mn alloy.展开更多
The effect of RE-modifier on the microstructure and mechanical properties of high carbon-medium manganese steel has been investigated in present work.The results showed that the RE-modifier can refine the crystalline ...The effect of RE-modifier on the microstructure and mechanical properties of high carbon-medium manganese steel has been investigated in present work.The results showed that the RE-modifier can refine the crystalline grain of high-carbon medium-manganese steel.The shape and distribution of carbides are improved and the columnar grains and phosphide in grain boundary are eliminated.Consequently,the impact toughness of the steel is increased by more than one time,compared with no addition of RE-modifier.展开更多
The microstructure and properties of high carbonic-chromium cast steel subjected to different hot deformation ratios were studied.The experimental results show that the microstructure and properties of high carbonic-c...The microstructure and properties of high carbonic-chromium cast steel subjected to different hot deformation ratios were studied.The experimental results show that the microstructure and properties of high carbonic-chromium cast steel are obviously improved after hot deformation,and the best mechanical properties of the cast steel can be obtained under hot deformation ratio of 40 %-50 %,which leads to the morphology change of eutectic carbide and the precipitation of granular carbides.展开更多
In this paper, a comparison study was carried out to investigate the influence of carbon content on the microstructure, hardness, and impact toughness of water-quenched Mn13Cr2 and Mn18Cr2 cast steels. The study resul...In this paper, a comparison study was carried out to investigate the influence of carbon content on the microstructure, hardness, and impact toughness of water-quenched Mn13Cr2 and Mn18Cr2 cast steels. The study results indicate that both steels' water-quenched microstructures are composed of austenite and a small amount of carbide. The study also found that, when the carbon contents are the same, there is less carbide in Mn18Cr2 steel than in Mn13Cr2 steel. Therefore, the hardness of Mn18Cr2 steel is lower than that of Mn13Cr2 steel but the impact toughness of Mn18Cr2 steel is higher than that of Mn13Cr2 steel. With increasing the carbon content, the hardness increases and the impact toughness decreases in these two kinds of steels, and the impact toughness of Mn18Cr2 steel substantially exceeds that of Mn13Cr2 steel. Therefore, the water-quenched Mn18Cr2 steel with high carbon content could be applied to relatively high impact abrasive working conditions, while the as-cast Mn18Cr2 steel could be only used under working conditions of relatively low impact abrasive load due to lower impact toughness.展开更多
This work aims to produce a high manganese steel with more refined austenite grains and better wear resistance without sacrificing the toughness and tensile properties by Mn alloying and Ti ladle treatment in comparis...This work aims to produce a high manganese steel with more refined austenite grains and better wear resistance without sacrificing the toughness and tensile properties by Mn alloying and Ti ladle treatment in comparision to ASTM A128 Gr.E1 steel (1.0C-13Mn) that is mostly used in the mining industry.The 1.0C-17Mn-xTi alloys (x=0,0.05 and 0.1,in wt.%) were prepared.A relationship was established between the microstructures and mechanical properties of the as-cast and solution annealed alloys.Increasing Ti content increases the stable Ti(CN) phase on and beside the grain boundaries and decreases up to 37% the austenite grain size of the as-cast alloy with 0.10wt.% Ti.Correspondingly,after solution annealed,optimized titanium content (0.05wt.%) results in significant improvements in wear resistance,hardness,elongation,yield and tensile strengths by 44%,31%,30%,8% and 12%,respectively,except 9% decrease in impact toughness compared to ASTM A 128 Gr.E1 steel without modification.These results show that 1.0C-17Mn-0.05Ti alloy can be used for parts exposed to high load wear and applied in conditions where relatively high tensile properties with sufficent ductility is needed.展开更多
Microstructure and mechanical properties of two kinds of non-magnetic high manganese steels with and without Nb addition which experienced the same rolling and heating treatment were investigated by means of scan ning...Microstructure and mechanical properties of two kinds of non-magnetic high manganese steels with and without Nb addition which experienced the same rolling and heating treatment were investigated by means of scan ning electron microscopy, electron back-scattered diffraction, transmission electron microscopy, X-ray diffraction and tensile test. It was found that the microstructure of the high manganese steel was refined by the Nb addition. Moreover, steel with Nb addition has a higher stacking fault energy which favors the deformation twinning, Twin ning is the most important deformation mechanism in the Nb-bearing steel. Therefore, steel with Nb addition has much higher strength and higher plasticity. The product of tensile strength and total elongation exceeds 61.8 GPa ·%. In addition, steel with Nb addition also has excellent non magnetic property.展开更多
Microstructure evolution and mechanical properties of newly designed 0.1C-6Mn-0.5Si-1Al TRIP-aided steels under different annealing conditions and the effects of matrix microstructure before intercritical annealing on...Microstructure evolution and mechanical properties of newly designed 0.1C-6Mn-0.5Si-1Al TRIP-aided steels under different annealing conditions and the effects of matrix microstructure before intercritical annealing on the final microstructure were studied by means of X-ray diffraction(XRD),scanning electron microcopy(SEM),dilatometric simulation,optical microstructure(OM) and tensile testing in this work.The experimental results indicate that the TRIP steel with Mn of 6% could form a considerable amount of retained austenite with good TRIP effect after a simple intercritical annealing treatment,and the matrix microstructure before intercritical annealing treatment can greatly affect the final microstructure.The original microstructure of the ferritic matrix steel was eliminated,while annealed martensite was remained from the martensite matrix steel under the same intercritical annealing conditions展开更多
Theoretical study on the short-range ordered segregation of alloying elements dissolving in solid solution in C-Me form has made some progress in recent years, which has already been verified by the electron probe, th...Theoretical study on the short-range ordered segregation of alloying elements dissolving in solid solution in C-Me form has made some progress in recent years, which has already been verified by the electron probe, the Mssbauer spectroscopy technique, and so on. Based on the empirical electron theory of solids and molecules (EET), and展开更多
A high-manganese austenitic steel matrix (Mn13) composite reinforced with TiN ceramic particles was synthesized by means of Vacuum-Evaporation Pattern Casting (V-EPC). The composite microstructure and interface bo...A high-manganese austenitic steel matrix (Mn13) composite reinforced with TiN ceramic particles was synthesized by means of Vacuum-Evaporation Pattern Casting (V-EPC). The composite microstructure and interface bonding of TiN/matrix were analyzed utilizing optical microscope (OM) and X-ray diffraction (XRD). The effects of different volume fraction of TiN on impact wear resistance were evaluated by MLD-10 impact wear test. The results showed that TiN was evenly distributed in composite layer and had a good interface bonding with matrix when the volume fractions of TiN were 27% and 36% respectively. However, cast defects and TiN agglomeration occurred when the TiN volume fraction increased to 48~. Compared with high-manganese austenitic steel (Mnl3), the im- pact wear resistance of the TiN-reinforced composite is better. In small impact load conditions, composite layer can effectively resist abrasives wear and TiN particles played an important role in determining impact wear resistance of composite layer. In large impact load, the synergistic roles of spalling of TiN particles and the increase of work hardening of Mn13 based material are responsible for impact wear resistance.展开更多
文摘High manganese steel has wide prospects in industry due to their excellent mechanical and damping properties. The quenching structures of high manganese steel are ε-martensite, γ-austenite and α'-martensite. Researches show that the damping properties of high manganese steel are related to these microstructures. Besides, there are many ways to improve the damping property of damping alloys. This paper reviews the damping mechanism and the influences of the ad-dition of alloying elements, heat treatment, pre-deformation and other factors on their damping performance, hoping to provide methods and ideas for the study of damping properties of high manganese steel. .
基金Project(51605342) supported by the National Natural Science Foundation of ChinaProject(2015CFB431) supported by the Natural Science Foundation of Hubei Province,China+1 种基金Project(K201520) supported by the Science Research Foundation of Wuhan Institute of Technology,ChinaProject(2016KA01) supported by the Open Research Fund Program of Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety,China
文摘The influence of high pressure and manganese addition on Fe-rich phases(FRPs)and mechanical properties of Al-14Si-2Fe alloy with rheo-squeeze casting(RSC)was investigated.The semi-solid alloy melt was treated by ultrasonic vibration(UV)firstly,and then formed by squeeze casting(SC).Results show that the FRPs in as-cast SC alloys are composed of coarseβ-Al5(Fe,Mn)Si,δ-Al4(Fe,Mn)Si2 and bone-shapedα-Al15(Fe,Mn)3Si2 phases when the pressure is 0 MPa.With RSC process,the FRPs are first refined by UV,and then the solidification under pressure further causes the grains to become smaller.The peritectic transformation occurs during the formation ofαphase.For the alloy with the same composition,the ultimate tensile strength(UTS)of RSC sample is higher than that of the SC sample.With the same forming process,the UTS of Al-14Si-2Fe-0.8Mn alloy is higher than that of Al-14Si-2Fe-0.4Mn alloy.
文摘The effect of RE-modifier on the microstructure and mechanical properties of high carbon-medium manganese steel has been investigated in present work.The results showed that the RE-modifier can refine the crystalline grain of high-carbon medium-manganese steel.The shape and distribution of carbides are improved and the columnar grains and phosphide in grain boundary are eliminated.Consequently,the impact toughness of the steel is increased by more than one time,compared with no addition of RE-modifier.
基金Item Sponsored by Guiding Program of Science and Technology Research of Hebei Province of China(94122123)
文摘The microstructure and properties of high carbonic-chromium cast steel subjected to different hot deformation ratios were studied.The experimental results show that the microstructure and properties of high carbonic-chromium cast steel are obviously improved after hot deformation,and the best mechanical properties of the cast steel can be obtained under hot deformation ratio of 40 %-50 %,which leads to the morphology change of eutectic carbide and the precipitation of granular carbides.
基金financially supported by China Guangdong Province Science and Technology Plan Project(Nos.2009B0903002882010B090300059+2 种基金2011A0808020032011B0904005192012B090600030)
文摘In this paper, a comparison study was carried out to investigate the influence of carbon content on the microstructure, hardness, and impact toughness of water-quenched Mn13Cr2 and Mn18Cr2 cast steels. The study results indicate that both steels' water-quenched microstructures are composed of austenite and a small amount of carbide. The study also found that, when the carbon contents are the same, there is less carbide in Mn18Cr2 steel than in Mn13Cr2 steel. Therefore, the hardness of Mn18Cr2 steel is lower than that of Mn13Cr2 steel but the impact toughness of Mn18Cr2 steel is higher than that of Mn13Cr2 steel. With increasing the carbon content, the hardness increases and the impact toughness decreases in these two kinds of steels, and the impact toughness of Mn18Cr2 steel substantially exceeds that of Mn13Cr2 steel. Therefore, the water-quenched Mn18Cr2 steel with high carbon content could be applied to relatively high impact abrasive working conditions, while the as-cast Mn18Cr2 steel could be only used under working conditions of relatively low impact abrasive load due to lower impact toughness.
文摘This work aims to produce a high manganese steel with more refined austenite grains and better wear resistance without sacrificing the toughness and tensile properties by Mn alloying and Ti ladle treatment in comparision to ASTM A128 Gr.E1 steel (1.0C-13Mn) that is mostly used in the mining industry.The 1.0C-17Mn-xTi alloys (x=0,0.05 and 0.1,in wt.%) were prepared.A relationship was established between the microstructures and mechanical properties of the as-cast and solution annealed alloys.Increasing Ti content increases the stable Ti(CN) phase on and beside the grain boundaries and decreases up to 37% the austenite grain size of the as-cast alloy with 0.10wt.% Ti.Correspondingly,after solution annealed,optimized titanium content (0.05wt.%) results in significant improvements in wear resistance,hardness,elongation,yield and tensile strengths by 44%,31%,30%,8% and 12%,respectively,except 9% decrease in impact toughness compared to ASTM A 128 Gr.E1 steel without modification.These results show that 1.0C-17Mn-0.05Ti alloy can be used for parts exposed to high load wear and applied in conditions where relatively high tensile properties with sufficent ductility is needed.
基金Sponsored by National Natural Science Foundation of China(51271035)Specialized Research Fund for the Doctoral Program of Higher Education of China(20110006110007)
文摘Microstructure and mechanical properties of two kinds of non-magnetic high manganese steels with and without Nb addition which experienced the same rolling and heating treatment were investigated by means of scan ning electron microscopy, electron back-scattered diffraction, transmission electron microscopy, X-ray diffraction and tensile test. It was found that the microstructure of the high manganese steel was refined by the Nb addition. Moreover, steel with Nb addition has a higher stacking fault energy which favors the deformation twinning, Twin ning is the most important deformation mechanism in the Nb-bearing steel. Therefore, steel with Nb addition has much higher strength and higher plasticity. The product of tensile strength and total elongation exceeds 61.8 GPa ·%. In addition, steel with Nb addition also has excellent non magnetic property.
基金Sponsored by National Basic Research Program of China(2010CB630802)
文摘Microstructure evolution and mechanical properties of newly designed 0.1C-6Mn-0.5Si-1Al TRIP-aided steels under different annealing conditions and the effects of matrix microstructure before intercritical annealing on the final microstructure were studied by means of X-ray diffraction(XRD),scanning electron microcopy(SEM),dilatometric simulation,optical microstructure(OM) and tensile testing in this work.The experimental results indicate that the TRIP steel with Mn of 6% could form a considerable amount of retained austenite with good TRIP effect after a simple intercritical annealing treatment,and the matrix microstructure before intercritical annealing treatment can greatly affect the final microstructure.The original microstructure of the ferritic matrix steel was eliminated,while annealed martensite was remained from the martensite matrix steel under the same intercritical annealing conditions
文摘Theoretical study on the short-range ordered segregation of alloying elements dissolving in solid solution in C-Me form has made some progress in recent years, which has already been verified by the electron probe, the Mssbauer spectroscopy technique, and so on. Based on the empirical electron theory of solids and molecules (EET), and
基金Item Sponsored by Office of Education of Shaanxi Province of China(08JK345)Programs for Industry Development of Shaanxi Province of China(2008K06-18)
文摘A high-manganese austenitic steel matrix (Mn13) composite reinforced with TiN ceramic particles was synthesized by means of Vacuum-Evaporation Pattern Casting (V-EPC). The composite microstructure and interface bonding of TiN/matrix were analyzed utilizing optical microscope (OM) and X-ray diffraction (XRD). The effects of different volume fraction of TiN on impact wear resistance were evaluated by MLD-10 impact wear test. The results showed that TiN was evenly distributed in composite layer and had a good interface bonding with matrix when the volume fractions of TiN were 27% and 36% respectively. However, cast defects and TiN agglomeration occurred when the TiN volume fraction increased to 48~. Compared with high-manganese austenitic steel (Mnl3), the im- pact wear resistance of the TiN-reinforced composite is better. In small impact load conditions, composite layer can effectively resist abrasives wear and TiN particles played an important role in determining impact wear resistance of composite layer. In large impact load, the synergistic roles of spalling of TiN particles and the increase of work hardening of Mn13 based material are responsible for impact wear resistance.