The impact of Fe concentrations on the growth of Microcystis aeruginosa in aquatic systems under high nitrate and low chlorophyll conditions was studied. The responses of cell density,total and cell chlorophyll-a intr...The impact of Fe concentrations on the growth of Microcystis aeruginosa in aquatic systems under high nitrate and low chlorophyll conditions was studied. The responses of cell density,total and cell chlorophyll-a intracellular Fe content and organic elemental composition of M.aeruginosa to different concentration gradients of Fe(Ⅲ) in the solutions were analysed. The results showed that the proliferation speeds of M. aeruginosa were:(1) decelerated when the Fe(Ⅲ) concentration was lower than 50 μg/L in the solutions,(2) promoted and positively related to the increase of Fe(Ⅲ) concentration from 100 to 500 μg/L in the solutions over the experimental period, and(3) promoted in the early stage but decelerated in later stages by excess adsorption of Fe by cells when the Fe(Ⅲ) concentration was higher than 500 μg/L in the solutions. The maximum cell density, total and cell chlorophyll-a were all observed at 500 μg Fe(Ⅲ)/L concentration. The organic elemental composition of M. aeruginosa was also affected by the concentration of Fe(Ⅲ) in the solutions, and the molecular formula of M. aeruginosa should be expressed as C7–7.5H14O0.8–1.3N3.5–5according to the functions for different Fe(Ⅲ)concentrations. Cell carbon and oxygen content appeared to increase slightly, while cell nitrogen content appeared to decrease as Fe(Ⅲ) concentrations increased from 100 to 500 μg/L in the solutions. This was attributed to the competition of photosynthesis and nitrogen adsorption under varying cell Fe content.展开更多
There is a close relationship between potassium(K)and nitrogen(N).However,the roles of K under high N conditions remain unclear.Using a hydroponics approach,we monitored the morphological,physiological,and molecular c...There is a close relationship between potassium(K)and nitrogen(N).However,the roles of K under high N conditions remain unclear.Using a hydroponics approach,we monitored the morphological,physiological,and molecular changes in M9T337 apple(Malus domestica)rootstocks under different nitrate(10 and 30 mmol·L^(-1)NO_(3)^(-))and K supply(0.5,6,10,and 20 mmol·L_(-1)K^(+))conditions.Results revealed that high nitrate inhibited the root growth of M9T337 rootstocks,downregulated the expressions of K transporter genes(MdPT5,MdHKT1,and MdATK1),and reduced the net NO3-and K+influx at the surface of roots,thereby resulting in an N/K imbalance in rootstocks.Further investigation showed that 10 mmol·L^(-1)K increased the activity of N metabolic enzymes(NR,GS,NiR,and GOGAT),upregulated the expressions of genes related to nitrate uptake and transport(MdNRT1.1,MdNRT1.2,MdNRT1.5,and MdNRT2.4),promoted15N transport from the roots to the shoots,optimized leaf N distribution,and improved photosynthetic N utilization efficiency under high nitrate conditions.These results suggest that the negative effects of high nitrate may be related to the N/K imbalance and that reducing N/K in plants by increasing K supply level can effectively alleviate the inhibition of N assimilation by high nitrate stress.展开更多
The nitrate ester substitution derivatives of prismane were studied at the B3LYP/6-311G** level. The sublimation enthalpies and heats of formation in gas phase and solid state were calculated. The detonation perform...The nitrate ester substitution derivatives of prismane were studied at the B3LYP/6-311G** level. The sublimation enthalpies and heats of formation in gas phase and solid state were calculated. The detonation performances were also predicted by using the famous Kamlet-Jacbos equation. Our calculated results show that introducing nitrate ester group into prismane is helpful to enhance its detonation properties. Stabilities were evaluated through the bond dissociation energies, bond order, characteristic heights(H50) and band gap calculations. The trigger bonds in the pyrolysis process of prismane derivatives were confirmed as O–ON2 bond. The BDEs of all compounds were large, so these prismane derivatives have excellent stability consistent with the results of H50 and band gap.展开更多
基金supported by the China National Major Project of Water Pollution Control(No.2012ZX07313001-002)JSPS Postdoctoral Fellow Program(No.P15353)+2 种基金Shaanxi Provincial Program for ScienceTechnology Development(No.2013KJXX-55)Program for Innovative Research Team(No.2013KCT-13)
文摘The impact of Fe concentrations on the growth of Microcystis aeruginosa in aquatic systems under high nitrate and low chlorophyll conditions was studied. The responses of cell density,total and cell chlorophyll-a intracellular Fe content and organic elemental composition of M.aeruginosa to different concentration gradients of Fe(Ⅲ) in the solutions were analysed. The results showed that the proliferation speeds of M. aeruginosa were:(1) decelerated when the Fe(Ⅲ) concentration was lower than 50 μg/L in the solutions,(2) promoted and positively related to the increase of Fe(Ⅲ) concentration from 100 to 500 μg/L in the solutions over the experimental period, and(3) promoted in the early stage but decelerated in later stages by excess adsorption of Fe by cells when the Fe(Ⅲ) concentration was higher than 500 μg/L in the solutions. The maximum cell density, total and cell chlorophyll-a were all observed at 500 μg Fe(Ⅲ)/L concentration. The organic elemental composition of M. aeruginosa was also affected by the concentration of Fe(Ⅲ) in the solutions, and the molecular formula of M. aeruginosa should be expressed as C7–7.5H14O0.8–1.3N3.5–5according to the functions for different Fe(Ⅲ)concentrations. Cell carbon and oxygen content appeared to increase slightly, while cell nitrogen content appeared to decrease as Fe(Ⅲ) concentrations increased from 100 to 500 μg/L in the solutions. This was attributed to the competition of photosynthesis and nitrogen adsorption under varying cell Fe content.
基金supported by the Special Fund for the National Key R&D Program of China(Grant No.2023YFD2301000)the earmarked fund for CARS(Grant No.CARS-27)the Taishan Scholar Assistance Program from Shandong Provincial Government(Grant No.TSPD20181206)。
文摘There is a close relationship between potassium(K)and nitrogen(N).However,the roles of K under high N conditions remain unclear.Using a hydroponics approach,we monitored the morphological,physiological,and molecular changes in M9T337 apple(Malus domestica)rootstocks under different nitrate(10 and 30 mmol·L^(-1)NO_(3)^(-))and K supply(0.5,6,10,and 20 mmol·L_(-1)K^(+))conditions.Results revealed that high nitrate inhibited the root growth of M9T337 rootstocks,downregulated the expressions of K transporter genes(MdPT5,MdHKT1,and MdATK1),and reduced the net NO3-and K+influx at the surface of roots,thereby resulting in an N/K imbalance in rootstocks.Further investigation showed that 10 mmol·L^(-1)K increased the activity of N metabolic enzymes(NR,GS,NiR,and GOGAT),upregulated the expressions of genes related to nitrate uptake and transport(MdNRT1.1,MdNRT1.2,MdNRT1.5,and MdNRT2.4),promoted15N transport from the roots to the shoots,optimized leaf N distribution,and improved photosynthetic N utilization efficiency under high nitrate conditions.These results suggest that the negative effects of high nitrate may be related to the N/K imbalance and that reducing N/K in plants by increasing K supply level can effectively alleviate the inhibition of N assimilation by high nitrate stress.
基金supported by the Natural Science Foundation of Guizhou Province(QKJ[2014]2140 and QJTD[2012]052)
文摘The nitrate ester substitution derivatives of prismane were studied at the B3LYP/6-311G** level. The sublimation enthalpies and heats of formation in gas phase and solid state were calculated. The detonation performances were also predicted by using the famous Kamlet-Jacbos equation. Our calculated results show that introducing nitrate ester group into prismane is helpful to enhance its detonation properties. Stabilities were evaluated through the bond dissociation energies, bond order, characteristic heights(H50) and band gap calculations. The trigger bonds in the pyrolysis process of prismane derivatives were confirmed as O–ON2 bond. The BDEs of all compounds were large, so these prismane derivatives have excellent stability consistent with the results of H50 and band gap.