Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the re...Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the research object and adopts the self-developed high-power microwave-induced fracturing test system for hard rock to conduct field experiments of microwave-induced fracturing of iron ore.The heating and reflection evolution characteristics of ore under different microwave parameters(antenna type,power,and working distance)were studied,and the optimal microwave parameters were obtained.Subsequently,the ore was irradiated with the optimal microwave parameters,and the cracking effect of the ore under the action of the high-power open microwave was analyzed.The results show that the reflection coefficient(standing wave ratio)can be rapidly(<5 s)and automatically adjusted below the preset threshold value(1.6)as microwave irradiation is performed.When using a right-angle horn antenna with a working distance of 5 cm,the effect of automatic reflection adjustment reaches the best among other antenna types and working distances.When the working distance is the same,the average temperature of the irradiation surface and the area of the high-temperature area under the action of the two antennas(right-angled and equal-angled horn antenna)are basically the same and decrease with the increase of working distance.The optimal microwave parameters are:a right-angle horn antenna with a working distance of 5 cm.Subsequently,in further experiments,the optimal parameters were used to irradiate for 20 s and 40 s at a microwave power of 60 kW,respectively.The surface damage extended 38 cm×30 cm and 53 cm×30 cm,respectively,and the damage extended to a depth of about 50 cm.The drilling speed was increased by 56.2%and 66.5%,respectively,compared to the case when microwaves were not used.展开更多
In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional un...In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional units obviously can not solve the new energy as the main body of the scheduling problem.To enhance the systemscheduling ability,based on the participation of thermal power units,incorporate the high energy-carrying load of electro-melting magnesiuminto the regulation object,and consider the effects on the wind unpredictability of the power.Firstly,the operating characteristics of high energy load and wind power are analyzed,and the principle of the participation of electrofusedmagnesiumhigh energy-carrying loads in the elimination of obstructedwind power is studied.Second,a two-layer optimization model is suggested,with the objective function being the largest amount of wind power consumed and the lowest possible cost of system operation.In the upper model,the high energy-carrying load regulates the blocked wind power,and in the lower model,the second-order cone approximation algorithm is used to solve the optimizationmodelwithwind power uncertainty,so that a two-layer optimizationmodel that takes into account the regulation of the high energy-carrying load of the electrofused magnesium and the uncertainty of the wind power is established.Finally,the model is solved using Gurobi,and the results of the simulation demonstrate that the suggested model may successfully lower wind abandonment,lower system operation costs,increase the accuracy of day-ahead scheduling,and lower the final product error of the thermal electricity unit.展开更多
A novel phase change heat sink was fabricated for packaging cooling of high power light emitting diode (LED). 3D structures as enhanced boiling structure in the evaporation surface were composed of a spiral micro-gr...A novel phase change heat sink was fabricated for packaging cooling of high power light emitting diode (LED). 3D structures as enhanced boiling structure in the evaporation surface were composed of a spiral micro-groove along circumferential direction and radial micro-grooves which were processed by ploughing-extrusion (P-E) and stamping, respectively. Meanwhile, the cycle power of refrigerant was supplied by wick of sintered copper powder on internal surface of phase change heat sink. Operational characteristics were tested under different heat loads and refrigerants. The experimental results show that phase change heat sink is provided with a good heat transfer capability and the temperature of phase change heat sink reaches 86.8 ℃ under input power of 10 W LED at ambient temperature of 20 ℃.展开更多
The output radiation from the 100μm×1μm aperture of a high power Laser Diode (LD) is efficiently coupled into a 50μm multimode optical fiber.The fiber output of the high power LD with high brightness and high ...The output radiation from the 100μm×1μm aperture of a high power Laser Diode (LD) is efficiently coupled into a 50μm multimode optical fiber.The fiber output of the high power LD with high brightness and high power density is achieved.The power density is up to 3 6×104W/cm2 and the coupling efficiency is 70%.The extreme divergence and the astigmatism of high power LDs require the optics with complex lens structures and high performance.A double-curved lens with two crossed cylindrical lenses structured on both sides of the glass substrate is used in the coupling system.展开更多
A low-power,high-frequency CMOS peak detector is proposed. This detector can detect RF signal and base-band signal peaks. The circuit is designed using SMIC 0.35μm standard CMOS technology. Both theoretical calculati...A low-power,high-frequency CMOS peak detector is proposed. This detector can detect RF signal and base-band signal peaks. The circuit is designed using SMIC 0.35μm standard CMOS technology. Both theoretical calculations and post simulations show that the detection error is no more than 2% for various temperatures and processes when the input amplitude is larger than 400mV. The detection bandwidth is up to 10GHz, and its static current dissipation is less than 20μA.展开更多
Rechargeable aqueous zinc-ion hybrid capacitors and zincion batteries are promising safe energy storage systems.In this study,amorphous RuO2·H2O for the first time was employed to achieve fast and ultralong-life ...Rechargeable aqueous zinc-ion hybrid capacitors and zincion batteries are promising safe energy storage systems.In this study,amorphous RuO2·H2O for the first time was employed to achieve fast and ultralong-life Zn2+storage based on a pseudocapacitive storage mechanism.In the RuO2·H2O||Zn zinc-ion hybrid capacitors with Zn(CF3SO3)2 aqueous electrolyte,the RuO2·H2O cathode can reversibly store Zn2+in a voltage window of 0.4-1.6 V(vs.Zn/Zn2+),delivering a high discharge capacity of 122 mAh g?1.In particular,the zinc-ion hybrid capacitors can be rapidly charged/discharged within 36 s with a very high power density of 16.74 kW kg?1 and a high energy density of 82 Wh kg?1.Besides,the zinc-ion hybrid capacitors demonstrate an ultralong cycle life(over 10,000 charge/discharge cycles).The kinetic analysis elucidates that the ultrafast Zn2+storage in the RuO2·H2O cathode originates from redox pseudocapacitive reactions.This work could greatly facilitate the development of high-power and safe electrochemical energy storage.展开更多
The high power microwave (HPM) damage effect on the AIGaAs/InGaAs pseudomorphic high electron mobility transistor (pHEMT) is studied by simulation and experiments. Simulated results suggest that the HPM damage to ...The high power microwave (HPM) damage effect on the AIGaAs/InGaAs pseudomorphic high electron mobility transistor (pHEMT) is studied by simulation and experiments. Simulated results suggest that the HPM damage to pHEMT is due to device burn-out caused by the emerging current path and strong electric field beneath the gate. Besides, the results demonstrate that the damage power threshold decreases but the energy threshold slightly increases with the increase of pulse-width, indicating that HPM with longer pulse-width requires lower power density but more energy to cause the damage to pHEMT. The empirical formulas are proposed to describe the pulse-width dependence. Then the experimental data validate the pulse-width dependence and verify that the proposed formula P = 55τ^-0.06 is capable of quickly and accurately estimating the HPM damage susceptibility of pHEMT. Finally the interior observation of damaged samples by scanning electron microscopy (SEM) illustrates that the failure mechanism of the HPM damage to pHEMT is indeed device bum-out and the location beneath the gate near the source side is most susceptible to bum-out, which is in accordance with the simulated results.展开更多
The CrN and Cr-Al-Si-N films were deposited on Si wafer and SUS 304 substrates by a hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and a DC pulse sputtering using Cr and AlSi targets under...The CrN and Cr-Al-Si-N films were deposited on Si wafer and SUS 304 substrates by a hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and a DC pulse sputtering using Cr and AlSi targets under N2/Ar atmosphere.By varying the sputtering current of the AlSi target in the range of 0-2.5 A,both the Al and Si contents in the films increased gradually from 0 to 19.1% and 11.1% (mole fraction),respectively.The influences of the AlSi cathode DC pulse current on the microstructure,phase constituents,mechanical properties,and oxidation behaviors of the Cr-Al-Si-N films were investigated systematically.The results indicate that the as-deposited Cr-Al-Si-N films possess the typical nanocomposite structure,namely the face centered cubic (Cr,Al)N nano-crystallites are embedded in the amorphous Si3N4 matrix.With increasing the Al and Si contents,the hardness of the film first increases from 20.8 GPa for the CrN film to the peak value of 29.4 GPa for the Cr0.23Al0.14Si0.07 N film,and then decreases gradually.In the meanwhile,the Cr0.23Al0.14Si0.07N film also possesses excellent high-temperature oxidation resistance that is much better than that of the CrN film at 900 or 1000 °C.展开更多
AIM: To evaluate the effect of different lens constant optimization methods on the accuracy of intraocular lens(IOL) power calculation formulas for highly myopic eyes.METHODS: This study comprised 108 eyes of 94 conse...AIM: To evaluate the effect of different lens constant optimization methods on the accuracy of intraocular lens(IOL) power calculation formulas for highly myopic eyes.METHODS: This study comprised 108 eyes of 94 consecutive patients with axial length(AL) over 26 mm undergoing phacoemulsification and implantation of a Rayner(Hove, UK) 920H IOL. Formulas were evaluated using the following lens constants: manufacturer’s lens constant, User Group for Laser Interference Biometry(ULIB) constant, and optimized constant for long eyes. Results were compared with Barrett Universal II formula, original Wang-Koch AL adjustment method, and modified Wang-Koch AL adjustment method. The outcomes assessed were mean absolute error(MAE) and percentage of eyes with IOL prediction errors within ±0.25, ±0.50, and ±1.0 diopter(D). The nonparametric method, Friedman test, was used to compare MAE performance among constants.RESULTS: Optimized constants could significantly reduce the MAE of SRK/T, Hoffer Q, and Holladay 1 formulas compared with manufacturer’s lens constant, whereas the percentage of eyes with IOL prediction errors within ±0.25, ±0.50, and ±1.0 D had no statistically significant differences. Optimized lens constant for long eyes alone showed non-significant refractive advantages over the ULIB constant. Barrett Universal II formula and formulas with AL adjustment showed significantly higher accuracy in highly myopic eyes(P<0.001). CONCLUSION: Lens constant optimization for the subset of long eyes reduces the refractive error only to a limited extent for highly myopic eyes.展开更多
In this paper, we present the damage effect and mechanism of high power microwave (HPM) on AIGaAs/GaAs pseudomorphic high-electron-mobility transistor (pHEMT) of low-noise amplifier (LNA). A detailed investigati...In this paper, we present the damage effect and mechanism of high power microwave (HPM) on AIGaAs/GaAs pseudomorphic high-electron-mobility transistor (pHEMT) of low-noise amplifier (LNA). A detailed investigation is carried out by simulation and experiment study. A two-dimensional electro-thermal model of the typical GaAs pHEMT induced by HPM is established in this paper. The simulation result reveals that avalanche breakdown, intrinsic excitation, and thermal breakdown all contribute to damage process. Heat accumulation occurs during the positive half cycle and the cylinder under the gate near the source side is most susceptible to burn-out. Experiment is carried out by injecting high power microwave into GaAs pHEMT LNA samples. It is found that the damage to LNA is because of the burn-out at first stage pHEMT. The interiors of the damaged samples are observed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). Experimental results accord well with the simulation of our model.展开更多
A very highly efficient InGaAlAs/AlGaAs quantum-well structure was designed for 808 nm emission,and laser diode chips 390-μm-wide aperture and 2-mm-long cavity length were fabricated.Special pretreatment and passivat...A very highly efficient InGaAlAs/AlGaAs quantum-well structure was designed for 808 nm emission,and laser diode chips 390-μm-wide aperture and 2-mm-long cavity length were fabricated.Special pretreatment and passivation for the chip facets were performed to achieve improved reliability performance.The laser chips were p-side-down mounted on the AlN submount,and then tested at continuous wave(CW)operation with the heat-sink temperature setting to 25℃using a thermoelectric cooler(TEC).As high as 60.5%of the wall-plug efficiency(WPE)was achieved at the injection current of 11 A.The maximum output power of 30.1 W was obtained at 29.5 A when the TEC temperature was set to 12°C.Accelerated life-time test showed that the laser diodes had lifetimes of over 62111 h operating at rated power of 10 W.展开更多
In order to test the klystrons operated at a frequency of 3.7 GHz in a continuous wave (CW) mode, a type of water load to absorb its power up to 750 kW is presented. The distilled water sealed with an RF ceramic win...In order to test the klystrons operated at a frequency of 3.7 GHz in a continuous wave (CW) mode, a type of water load to absorb its power up to 750 kW is presented. The distilled water sealed with an RF ceramic window is used as the absorbent. At a frequency range of 70 MHz, the VSWR (Voltage Standing Wave Ratio) is below 1.2, and the rise in temperature of water is about 30 ℃ at the highest power level.展开更多
We have developed a conceptual design of a 15-TW pulsed-power accelerator based on the linear-transformer-driver(LTD)architecture described by Stygar[W.A.Stygar et al.,Phys.Rev.ST Accel.Beams 18,110401(2015)].The driv...We have developed a conceptual design of a 15-TW pulsed-power accelerator based on the linear-transformer-driver(LTD)architecture described by Stygar[W.A.Stygar et al.,Phys.Rev.ST Accel.Beams 18,110401(2015)].The driver will allow multiple,high-energy-density experiments per day in a university environment and,at the same time,will enable both fundamental and integrated experiments that are scalable to larger facilities.In this design,many individual energy storage units(bricks),each composed of two capacitors and one switch,directly drive the target load without additional pulse compression.Ten LTD modules in parallel drive the load.Each module consists of 16 LTD cavities connected in series,where each cavity is powered by 22 bricks connected in parallel.This design stores up to 2.75 MJ and delivers up to 15 TW in 100 ns to the constant-impedance,water-insulated radial transmission lines.The transmission lines in turn deliver a peak current as high as 12.5 MA to the physics load.To maximize its experimental value and flexibility,the accelerator is coupled to a modern,multibeam laser facility(four beams with up to 5 kJ in 10 ns and one beam with up to 2.6 kJ in 100 ps or less)that can provide auxiliary heating of the physics load.The lasers also enable advanced diagnostic techniques such as X-ray Thomson scattering and multiframe and three-dimensional radiography.The coupled accelerator-laser facility will be the first of its kind and be capable of conducting unprecedented high-energy-densityephysics experiments.展开更多
Electrode material based on a novel core–shell structure consisting of NiCoS(NCS) solid fiber core and Mn S(MS) sheet shell(NCS@MS) in situ grown on carbon cloth(CC) has been successfully prepared by a simple...Electrode material based on a novel core–shell structure consisting of NiCoS(NCS) solid fiber core and Mn S(MS) sheet shell(NCS@MS) in situ grown on carbon cloth(CC) has been successfully prepared by a simple sulfurization-assisted hydrothermal method for high performance supercapacitor. The synthesized NiCoS@Mn S/CC electrode shows high capacitance of 1908.3 F gat a current density of 0.5 A gwhich is higher than those of NiCoSand Mn S at the same current density. A flexible all-solid-state asymmetric supercapacitor(ASC) is constructed by using NiCoS@Mn S/CC as positive electrode, active carbon/CC as negative electrode and KOH/poly(vinyl alcohol)(PVA) as electrolyte. The optimized ASC shows a maximum energy density of 23.3 Wh kgat 1 A g, a maximum power density of about7.5 kw kgat 10 A gand remarkable cycling stability. After 9000 cycles, the ASC still exhibited67.8% retention rate and largely unchanged charge/discharge curves. The excellent electrochemical properties are resulted from the novel core–shell structure of the NiCoS@Mn S/CC electrode, which possesses both high surface area for Faraday redox reaction and superior kinetics of charge transport. The NiCoS@Mn S/CC electrode shows a promising potential for energy storage applications in the future.展开更多
Exploring high ion/electron conductive olivine-type transition metal phosphates is of vital significance to broaden their applicability in rapid-charging devices.Herein,we report an interface engineered Li Fe0.5Mn0.5P...Exploring high ion/electron conductive olivine-type transition metal phosphates is of vital significance to broaden their applicability in rapid-charging devices.Herein,we report an interface engineered Li Fe0.5Mn0.5PO4/rGO@C cathode material by the synergistic effects of r GO and polydopamine-derived N-doped carbon.The well-distributed Li Fe0.5Mn0.5PO4nanoparticles are tightly anchored on r GO nanosheet benefited by the coating of N-doped carbon layer.The design of such an architecture can effectively suppress the agglomeration of nanoparticles with a shortened Li+transfer path.Meantime,the high-speed conducting network has been constructed by r GO and N-doped carbon,which exhibits the face-to-face contact with Li Fe0.5Mn0.5PO4nanoparticles,guaranteeing the rapid electron transfer.These profits endow the Li Fe0.5Mn0.5PO4/rGO@C hybrids with a fast charge-discharge ability,e.g.a high reversible capacity of 105 m Ah·g^-1at 10 C,much higher than that of the Li Fe0.5Mn0.5PO4@C nanoparticles(46 mA·h·g^-1).Furthermore,a 90.8%capacity retention can be obtained even after cycling 500 times at 2 C.This work gives a new avenue to fabricate transition metal phosphate with superior electrochemical performance for high-power Li-ion batteries.展开更多
This paper used optical emission spectroscopy (OES) to study the gas phase in high power DC arc plasma jet chemical vapour deposition (CVD) during diamond films growth processes. The results show that all the depo...This paper used optical emission spectroscopy (OES) to study the gas phase in high power DC arc plasma jet chemical vapour deposition (CVD) during diamond films growth processes. The results show that all the deposition parameters (methane concentration, substrate temperature, gas flow rate and ratio of H2/Ar) could strongly influence the gas phase. C2 is found to be the most sensitive radical to deposition parameters among the radicals in gas phase. Spatially resolved OES implies that a relative high concentration of atomic H exists near the substrate surface, which is beneficial for diamond film growth. The relatively high concentrations of C2 and CH are correlated with high deposition rate of diamond. In our high deposition rate system, C2 is presumed to be the main growth radical, and CH is also believed to contribute the diamond deposition.展开更多
There has been a growing need for high specific power electrical machines for a wide range of applications.These include hybrid/electric traction applications,and aerospace applications.A lot of work has been done to ...There has been a growing need for high specific power electrical machines for a wide range of applications.These include hybrid/electric traction applications,and aerospace applications.A lot of work has been done to accomplish significantly higher specific power electrical machines especially for aerospace applications.Several machine topologies as well as thermal management schemes have been proposed.Even though there has been a few publications that provided an overview of high-speed and high specific power electrical machines[1-3],the goal of this paper is to provide a more comprehensive review of high specific power electrical machines with special focus on machines that have been built and tested and are considered the leading candidates defining the state-of-the art.Another key objective of this paper is to highlight the key“system-level”tradeoffs involved in pushing electrical machines to higher specific power.Focusing solely on the machine specific power can lead to a sub-optimal solution at the system-level.展开更多
Lithium-ion batteries(LIBs)have shown considerable promise as an energy storage system due to their high conversion efficiency,size options(from coin cell to grid storage),and free of gaseous exhaust.For LIBs,power de...Lithium-ion batteries(LIBs)have shown considerable promise as an energy storage system due to their high conversion efficiency,size options(from coin cell to grid storage),and free of gaseous exhaust.For LIBs,power density and energy density are two of the most important parameters for their practical use,and the power density is the key factor for applications such as fast-charging electric vehicles,high-power portable tools,and power grid stabilization.A high rate of performance is also required for devices that store electrical energy from seasonal or irregular energy sources,such as wind energy and wave energy.Significant efforts have been made over the last several years to improve the power density of LIBs through anodes,cathodes,and electrolytes,and much progress has been made.To provide a comprehensive picture of these recent achievements,this review discusses the progress made in high-power LIBs from 2013 to the present,including general and fundamental principles of high-power LIBs,challenges facing LIB development today,and an outlook for future LIB development.展开更多
Electric system planning with high variable renewable energy(VRE)penetration levels has attracted great attention world-wide.Electricity production of VRE highly depends on the weather conditions and thus involves lar...Electric system planning with high variable renewable energy(VRE)penetration levels has attracted great attention world-wide.Electricity production of VRE highly depends on the weather conditions and thus involves large variability,uncertainty,and low-capacity credit.This gives rise to significant challenges for power system planning.Currently,many solutions are proposed to address the issue of operational flexibility inadequacy,including flexibility retrofit of thermal units,inter-regional transmission,electricity energy storage,and demand response(DR).Evidently,the performance and the cost of various solutions are different.It is relevant to explore the optimal portfolio to satisfy the flexibility requirement for a renewable dominated system and the role of each flexibility source.In this study,the value of diverse DR flexibilities was examined and a stochastic investment planning model considering DR is proposed.Two types of DRs,namely interrupted DR and transferred DR,were modeled.Chronological load and renewable generation curves with 8760 hours within a whole year were reduced to 4 weekly scenarios to accelerate the optimization.Clustered unit commitment constraints for accommodating variability of renewables were incorporated.Case studies based on IEEE RTS-96 system are reported to demonstrate the effectiveness of the proposed method and the DR potential to avoid energy storage investment.展开更多
Due to their rapid power delivery,fast charging,and long cycle life,supercapacitors have become an important energy storage technology recently.However,to meet the continuously increasing demands in the fields of port...Due to their rapid power delivery,fast charging,and long cycle life,supercapacitors have become an important energy storage technology recently.However,to meet the continuously increasing demands in the fields of portable electronics,transportation,and future robotic technologies,supercapacitors with higher energy densities without sacrificing high power densities and cycle stabilities are still challenged.Transition metal compounds(TMCs)possessing high theoretical capacitance are always used as electrode materials to improve the energy densities of supercapacitors.However,the power densities and cycle lives of such TMCs-based electrodes are still inferior due to their low intrinsic conductivity and large volume expansion during the charge/discharge process,which greatly impede their large-scale applications.Most recently,the ideal integrating of TMCs and conductive carbon skeletons is considered as an effective solution to solve the above challenges.Herein,we summarize the recent developments of TMCs/carbon hybrid electrodes which exhibit both high energy/power densities from the aspects of structural design strategies,including conductive carbon skeleton,interface engineering,and electronic structure.Furthermore,the remaining challenges and future perspectives are also highlighted so as to provide strategies for the high energy/power TMCs/carbon-based supercapacitors.展开更多
基金financial support from the National Natural Science Foundation of China(Grant No.41827806)the Liaoning Provincial Science and Technology Program of China(Grant No.2022JH2/101300109).
文摘Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the research object and adopts the self-developed high-power microwave-induced fracturing test system for hard rock to conduct field experiments of microwave-induced fracturing of iron ore.The heating and reflection evolution characteristics of ore under different microwave parameters(antenna type,power,and working distance)were studied,and the optimal microwave parameters were obtained.Subsequently,the ore was irradiated with the optimal microwave parameters,and the cracking effect of the ore under the action of the high-power open microwave was analyzed.The results show that the reflection coefficient(standing wave ratio)can be rapidly(<5 s)and automatically adjusted below the preset threshold value(1.6)as microwave irradiation is performed.When using a right-angle horn antenna with a working distance of 5 cm,the effect of automatic reflection adjustment reaches the best among other antenna types and working distances.When the working distance is the same,the average temperature of the irradiation surface and the area of the high-temperature area under the action of the two antennas(right-angled and equal-angled horn antenna)are basically the same and decrease with the increase of working distance.The optimal microwave parameters are:a right-angle horn antenna with a working distance of 5 cm.Subsequently,in further experiments,the optimal parameters were used to irradiate for 20 s and 40 s at a microwave power of 60 kW,respectively.The surface damage extended 38 cm×30 cm and 53 cm×30 cm,respectively,and the damage extended to a depth of about 50 cm.The drilling speed was increased by 56.2%and 66.5%,respectively,compared to the case when microwaves were not used.
基金funded by the National Key R&D Program of China,Grant Number 2019YFB1505400.
文摘In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional units obviously can not solve the new energy as the main body of the scheduling problem.To enhance the systemscheduling ability,based on the participation of thermal power units,incorporate the high energy-carrying load of electro-melting magnesiuminto the regulation object,and consider the effects on the wind unpredictability of the power.Firstly,the operating characteristics of high energy load and wind power are analyzed,and the principle of the participation of electrofusedmagnesiumhigh energy-carrying loads in the elimination of obstructedwind power is studied.Second,a two-layer optimization model is suggested,with the objective function being the largest amount of wind power consumed and the lowest possible cost of system operation.In the upper model,the high energy-carrying load regulates the blocked wind power,and in the lower model,the second-order cone approximation algorithm is used to solve the optimizationmodelwithwind power uncertainty,so that a two-layer optimizationmodel that takes into account the regulation of the high energy-carrying load of the electrofused magnesium and the uncertainty of the wind power is established.Finally,the model is solved using Gurobi,and the results of the simulation demonstrate that the suggested model may successfully lower wind abandonment,lower system operation costs,increase the accuracy of day-ahead scheduling,and lower the final product error of the thermal electricity unit.
基金Projects(50436010,50930005)supported by the National Natural Science Foundation of ChinaProject(U0834002)supported by the Joint Fund of NSFC-Guangdong of China
文摘A novel phase change heat sink was fabricated for packaging cooling of high power light emitting diode (LED). 3D structures as enhanced boiling structure in the evaporation surface were composed of a spiral micro-groove along circumferential direction and radial micro-grooves which were processed by ploughing-extrusion (P-E) and stamping, respectively. Meanwhile, the cycle power of refrigerant was supplied by wick of sintered copper powder on internal surface of phase change heat sink. Operational characteristics were tested under different heat loads and refrigerants. The experimental results show that phase change heat sink is provided with a good heat transfer capability and the temperature of phase change heat sink reaches 86.8 ℃ under input power of 10 W LED at ambient temperature of 20 ℃.
文摘The output radiation from the 100μm×1μm aperture of a high power Laser Diode (LD) is efficiently coupled into a 50μm multimode optical fiber.The fiber output of the high power LD with high brightness and high power density is achieved.The power density is up to 3 6×104W/cm2 and the coupling efficiency is 70%.The extreme divergence and the astigmatism of high power LDs require the optics with complex lens structures and high performance.A double-curved lens with two crossed cylindrical lenses structured on both sides of the glass substrate is used in the coupling system.
文摘A low-power,high-frequency CMOS peak detector is proposed. This detector can detect RF signal and base-band signal peaks. The circuit is designed using SMIC 0.35μm standard CMOS technology. Both theoretical calculations and post simulations show that the detection error is no more than 2% for various temperatures and processes when the input amplitude is larger than 400mV. The detection bandwidth is up to 10GHz, and its static current dissipation is less than 20μA.
基金the financial support by the Australian Research Council through the ARC Discovery projects(DP160104340 and DP170100436)Rail Manufacturing Cooperative Research Centre(RMCRC 1.1.1 and RMCRC 1.1.2 projects)+1 种基金financially supported by the International Science&Technology Cooperation Program of China(No.2016YFE0102200)Shenzhen Technical Plan Project(No.JCYJ20160301154114273).
文摘Rechargeable aqueous zinc-ion hybrid capacitors and zincion batteries are promising safe energy storage systems.In this study,amorphous RuO2·H2O for the first time was employed to achieve fast and ultralong-life Zn2+storage based on a pseudocapacitive storage mechanism.In the RuO2·H2O||Zn zinc-ion hybrid capacitors with Zn(CF3SO3)2 aqueous electrolyte,the RuO2·H2O cathode can reversibly store Zn2+in a voltage window of 0.4-1.6 V(vs.Zn/Zn2+),delivering a high discharge capacity of 122 mAh g?1.In particular,the zinc-ion hybrid capacitors can be rapidly charged/discharged within 36 s with a very high power density of 16.74 kW kg?1 and a high energy density of 82 Wh kg?1.Besides,the zinc-ion hybrid capacitors demonstrate an ultralong cycle life(over 10,000 charge/discharge cycles).The kinetic analysis elucidates that the ultrafast Zn2+storage in the RuO2·H2O cathode originates from redox pseudocapacitive reactions.This work could greatly facilitate the development of high-power and safe electrochemical energy storage.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB339900)the National Natural Science Foundation of China(Grant No.60776034)
文摘The high power microwave (HPM) damage effect on the AIGaAs/InGaAs pseudomorphic high electron mobility transistor (pHEMT) is studied by simulation and experiments. Simulated results suggest that the HPM damage to pHEMT is due to device burn-out caused by the emerging current path and strong electric field beneath the gate. Besides, the results demonstrate that the damage power threshold decreases but the energy threshold slightly increases with the increase of pulse-width, indicating that HPM with longer pulse-width requires lower power density but more energy to cause the damage to pHEMT. The empirical formulas are proposed to describe the pulse-width dependence. Then the experimental data validate the pulse-width dependence and verify that the proposed formula P = 55τ^-0.06 is capable of quickly and accurately estimating the HPM damage susceptibility of pHEMT. Finally the interior observation of damaged samples by scanning electron microscopy (SEM) illustrates that the failure mechanism of the HPM damage to pHEMT is indeed device bum-out and the location beneath the gate near the source side is most susceptible to bum-out, which is in accordance with the simulated results.
基金supported by a 2-Year Research Grant of Pusan National University,Korea
文摘The CrN and Cr-Al-Si-N films were deposited on Si wafer and SUS 304 substrates by a hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and a DC pulse sputtering using Cr and AlSi targets under N2/Ar atmosphere.By varying the sputtering current of the AlSi target in the range of 0-2.5 A,both the Al and Si contents in the films increased gradually from 0 to 19.1% and 11.1% (mole fraction),respectively.The influences of the AlSi cathode DC pulse current on the microstructure,phase constituents,mechanical properties,and oxidation behaviors of the Cr-Al-Si-N films were investigated systematically.The results indicate that the as-deposited Cr-Al-Si-N films possess the typical nanocomposite structure,namely the face centered cubic (Cr,Al)N nano-crystallites are embedded in the amorphous Si3N4 matrix.With increasing the Al and Si contents,the hardness of the film first increases from 20.8 GPa for the CrN film to the peak value of 29.4 GPa for the Cr0.23Al0.14Si0.07 N film,and then decreases gradually.In the meanwhile,the Cr0.23Al0.14Si0.07N film also possesses excellent high-temperature oxidation resistance that is much better than that of the CrN film at 900 or 1000 °C.
基金Supported by National Natural Science Foundation of China(No.81770905)
文摘AIM: To evaluate the effect of different lens constant optimization methods on the accuracy of intraocular lens(IOL) power calculation formulas for highly myopic eyes.METHODS: This study comprised 108 eyes of 94 consecutive patients with axial length(AL) over 26 mm undergoing phacoemulsification and implantation of a Rayner(Hove, UK) 920H IOL. Formulas were evaluated using the following lens constants: manufacturer’s lens constant, User Group for Laser Interference Biometry(ULIB) constant, and optimized constant for long eyes. Results were compared with Barrett Universal II formula, original Wang-Koch AL adjustment method, and modified Wang-Koch AL adjustment method. The outcomes assessed were mean absolute error(MAE) and percentage of eyes with IOL prediction errors within ±0.25, ±0.50, and ±1.0 diopter(D). The nonparametric method, Friedman test, was used to compare MAE performance among constants.RESULTS: Optimized constants could significantly reduce the MAE of SRK/T, Hoffer Q, and Holladay 1 formulas compared with manufacturer’s lens constant, whereas the percentage of eyes with IOL prediction errors within ±0.25, ±0.50, and ±1.0 D had no statistically significant differences. Optimized lens constant for long eyes alone showed non-significant refractive advantages over the ULIB constant. Barrett Universal II formula and formulas with AL adjustment showed significantly higher accuracy in highly myopic eyes(P<0.001). CONCLUSION: Lens constant optimization for the subset of long eyes reduces the refractive error only to a limited extent for highly myopic eyes.
基金supported by the National Basic Research Program of China(Grant No.2014CB339900)the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and TechnologyChina Academy of Engineering Physics(Grant No.2015-0214.XY.K)
文摘In this paper, we present the damage effect and mechanism of high power microwave (HPM) on AIGaAs/GaAs pseudomorphic high-electron-mobility transistor (pHEMT) of low-noise amplifier (LNA). A detailed investigation is carried out by simulation and experiment study. A two-dimensional electro-thermal model of the typical GaAs pHEMT induced by HPM is established in this paper. The simulation result reveals that avalanche breakdown, intrinsic excitation, and thermal breakdown all contribute to damage process. Heat accumulation occurs during the positive half cycle and the cylinder under the gate near the source side is most susceptible to burn-out. Experiment is carried out by injecting high power microwave into GaAs pHEMT LNA samples. It is found that the damage to LNA is because of the burn-out at first stage pHEMT. The interiors of the damaged samples are observed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). Experimental results accord well with the simulation of our model.
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2018GY-005, No. 2017GY-065, No. 2017KJXX-72)
文摘A very highly efficient InGaAlAs/AlGaAs quantum-well structure was designed for 808 nm emission,and laser diode chips 390-μm-wide aperture and 2-mm-long cavity length were fabricated.Special pretreatment and passivation for the chip facets were performed to achieve improved reliability performance.The laser chips were p-side-down mounted on the AlN submount,and then tested at continuous wave(CW)operation with the heat-sink temperature setting to 25℃using a thermoelectric cooler(TEC).As high as 60.5%of the wall-plug efficiency(WPE)was achieved at the injection current of 11 A.The maximum output power of 30.1 W was obtained at 29.5 A when the TEC temperature was set to 12°C.Accelerated life-time test showed that the laser diodes had lifetimes of over 62111 h operating at rated power of 10 W.
文摘In order to test the klystrons operated at a frequency of 3.7 GHz in a continuous wave (CW) mode, a type of water load to absorb its power up to 750 kW is presented. The distilled water sealed with an RF ceramic window is used as the absorbent. At a frequency range of 70 MHz, the VSWR (Voltage Standing Wave Ratio) is below 1.2, and the rise in temperature of water is about 30 ℃ at the highest power level.
文摘We have developed a conceptual design of a 15-TW pulsed-power accelerator based on the linear-transformer-driver(LTD)architecture described by Stygar[W.A.Stygar et al.,Phys.Rev.ST Accel.Beams 18,110401(2015)].The driver will allow multiple,high-energy-density experiments per day in a university environment and,at the same time,will enable both fundamental and integrated experiments that are scalable to larger facilities.In this design,many individual energy storage units(bricks),each composed of two capacitors and one switch,directly drive the target load without additional pulse compression.Ten LTD modules in parallel drive the load.Each module consists of 16 LTD cavities connected in series,where each cavity is powered by 22 bricks connected in parallel.This design stores up to 2.75 MJ and delivers up to 15 TW in 100 ns to the constant-impedance,water-insulated radial transmission lines.The transmission lines in turn deliver a peak current as high as 12.5 MA to the physics load.To maximize its experimental value and flexibility,the accelerator is coupled to a modern,multibeam laser facility(four beams with up to 5 kJ in 10 ns and one beam with up to 2.6 kJ in 100 ps or less)that can provide auxiliary heating of the physics load.The lasers also enable advanced diagnostic techniques such as X-ray Thomson scattering and multiframe and three-dimensional radiography.The coupled accelerator-laser facility will be the first of its kind and be capable of conducting unprecedented high-energy-densityephysics experiments.
基金supported by the Grant-in-Aid for Scientific Research (KAKENHI) program, Japan (C, Grant Number 15K05597)Takahashi Industrial and Economic Research Foundation (Takahashi Grant Number 06-003-154)
文摘Electrode material based on a novel core–shell structure consisting of NiCoS(NCS) solid fiber core and Mn S(MS) sheet shell(NCS@MS) in situ grown on carbon cloth(CC) has been successfully prepared by a simple sulfurization-assisted hydrothermal method for high performance supercapacitor. The synthesized NiCoS@Mn S/CC electrode shows high capacitance of 1908.3 F gat a current density of 0.5 A gwhich is higher than those of NiCoSand Mn S at the same current density. A flexible all-solid-state asymmetric supercapacitor(ASC) is constructed by using NiCoS@Mn S/CC as positive electrode, active carbon/CC as negative electrode and KOH/poly(vinyl alcohol)(PVA) as electrolyte. The optimized ASC shows a maximum energy density of 23.3 Wh kgat 1 A g, a maximum power density of about7.5 kw kgat 10 A gand remarkable cycling stability. After 9000 cycles, the ASC still exhibited67.8% retention rate and largely unchanged charge/discharge curves. The excellent electrochemical properties are resulted from the novel core–shell structure of the NiCoS@Mn S/CC electrode, which possesses both high surface area for Faraday redox reaction and superior kinetics of charge transport. The NiCoS@Mn S/CC electrode shows a promising potential for energy storage applications in the future.
基金supported by the National Natural Science Foundation of China(21975074,91534202,and 91834301)the Shanghai Scientific and Technological Innovation Project(18JC1410500)the Fundamental Research Funds for the Central Universities(222201718002)。
文摘Exploring high ion/electron conductive olivine-type transition metal phosphates is of vital significance to broaden their applicability in rapid-charging devices.Herein,we report an interface engineered Li Fe0.5Mn0.5PO4/rGO@C cathode material by the synergistic effects of r GO and polydopamine-derived N-doped carbon.The well-distributed Li Fe0.5Mn0.5PO4nanoparticles are tightly anchored on r GO nanosheet benefited by the coating of N-doped carbon layer.The design of such an architecture can effectively suppress the agglomeration of nanoparticles with a shortened Li+transfer path.Meantime,the high-speed conducting network has been constructed by r GO and N-doped carbon,which exhibits the face-to-face contact with Li Fe0.5Mn0.5PO4nanoparticles,guaranteeing the rapid electron transfer.These profits endow the Li Fe0.5Mn0.5PO4/rGO@C hybrids with a fast charge-discharge ability,e.g.a high reversible capacity of 105 m Ah·g^-1at 10 C,much higher than that of the Li Fe0.5Mn0.5PO4@C nanoparticles(46 mA·h·g^-1).Furthermore,a 90.8%capacity retention can be obtained even after cycling 500 times at 2 C.This work gives a new avenue to fabricate transition metal phosphate with superior electrochemical performance for high-power Li-ion batteries.
文摘This paper used optical emission spectroscopy (OES) to study the gas phase in high power DC arc plasma jet chemical vapour deposition (CVD) during diamond films growth processes. The results show that all the deposition parameters (methane concentration, substrate temperature, gas flow rate and ratio of H2/Ar) could strongly influence the gas phase. C2 is found to be the most sensitive radical to deposition parameters among the radicals in gas phase. Spatially resolved OES implies that a relative high concentration of atomic H exists near the substrate surface, which is beneficial for diamond film growth. The relatively high concentrations of C2 and CH are correlated with high deposition rate of diamond. In our high deposition rate system, C2 is presumed to be the main growth radical, and CH is also believed to contribute the diamond deposition.
文摘There has been a growing need for high specific power electrical machines for a wide range of applications.These include hybrid/electric traction applications,and aerospace applications.A lot of work has been done to accomplish significantly higher specific power electrical machines especially for aerospace applications.Several machine topologies as well as thermal management schemes have been proposed.Even though there has been a few publications that provided an overview of high-speed and high specific power electrical machines[1-3],the goal of this paper is to provide a more comprehensive review of high specific power electrical machines with special focus on machines that have been built and tested and are considered the leading candidates defining the state-of-the art.Another key objective of this paper is to highlight the key“system-level”tradeoffs involved in pushing electrical machines to higher specific power.Focusing solely on the machine specific power can lead to a sub-optimal solution at the system-level.
基金financial support from National Natural Science Foundation of China(Grant No.21805079)the Fundamental Research Funds for the Central Universities(531107051077)Hunan high-level talent gathering project(2018RS3054)
文摘Lithium-ion batteries(LIBs)have shown considerable promise as an energy storage system due to their high conversion efficiency,size options(from coin cell to grid storage),and free of gaseous exhaust.For LIBs,power density and energy density are two of the most important parameters for their practical use,and the power density is the key factor for applications such as fast-charging electric vehicles,high-power portable tools,and power grid stabilization.A high rate of performance is also required for devices that store electrical energy from seasonal or irregular energy sources,such as wind energy and wave energy.Significant efforts have been made over the last several years to improve the power density of LIBs through anodes,cathodes,and electrolytes,and much progress has been made.To provide a comprehensive picture of these recent achievements,this review discusses the progress made in high-power LIBs from 2013 to the present,including general and fundamental principles of high-power LIBs,challenges facing LIB development today,and an outlook for future LIB development.
基金jointly supported by Youth Program of National Natural Science Foundation of China(No.51907100)Technical Program of Global Energy Interconnection Group Co.,Ltd(No.1100/2020-75001B)
文摘Electric system planning with high variable renewable energy(VRE)penetration levels has attracted great attention world-wide.Electricity production of VRE highly depends on the weather conditions and thus involves large variability,uncertainty,and low-capacity credit.This gives rise to significant challenges for power system planning.Currently,many solutions are proposed to address the issue of operational flexibility inadequacy,including flexibility retrofit of thermal units,inter-regional transmission,electricity energy storage,and demand response(DR).Evidently,the performance and the cost of various solutions are different.It is relevant to explore the optimal portfolio to satisfy the flexibility requirement for a renewable dominated system and the role of each flexibility source.In this study,the value of diverse DR flexibilities was examined and a stochastic investment planning model considering DR is proposed.Two types of DRs,namely interrupted DR and transferred DR,were modeled.Chronological load and renewable generation curves with 8760 hours within a whole year were reduced to 4 weekly scenarios to accelerate the optimization.Clustered unit commitment constraints for accommodating variability of renewables were incorporated.Case studies based on IEEE RTS-96 system are reported to demonstrate the effectiveness of the proposed method and the DR potential to avoid energy storage investment.
基金This work was supported by the National Natural Science Foundation of China(Nos.51972342,and 51872056)Taishan Scholar Project of Shandong Province(ts20190922)+3 种基金Key Basic Research Project of Natural Science Foundation of Shandong Province(ZR2019ZD51)Project funded by China Postdoctoral Science Foundation(2019TQ0353 and 2020M672165)Fundamental Research Funds for the Central Universities(20CX06024A)Shandong Provincial Natural Science Foundation,China(ZR201911040344).
文摘Due to their rapid power delivery,fast charging,and long cycle life,supercapacitors have become an important energy storage technology recently.However,to meet the continuously increasing demands in the fields of portable electronics,transportation,and future robotic technologies,supercapacitors with higher energy densities without sacrificing high power densities and cycle stabilities are still challenged.Transition metal compounds(TMCs)possessing high theoretical capacitance are always used as electrode materials to improve the energy densities of supercapacitors.However,the power densities and cycle lives of such TMCs-based electrodes are still inferior due to their low intrinsic conductivity and large volume expansion during the charge/discharge process,which greatly impede their large-scale applications.Most recently,the ideal integrating of TMCs and conductive carbon skeletons is considered as an effective solution to solve the above challenges.Herein,we summarize the recent developments of TMCs/carbon hybrid electrodes which exhibit both high energy/power densities from the aspects of structural design strategies,including conductive carbon skeleton,interface engineering,and electronic structure.Furthermore,the remaining challenges and future perspectives are also highlighted so as to provide strategies for the high energy/power TMCs/carbon-based supercapacitors.