The argon plasma induced by the L-/C-band high-power microwave(HPM) is investigated theoretically and experimentally. Influences of the microwave power, pulse width, polarization and the plasma electron density on the...The argon plasma induced by the L-/C-band high-power microwave(HPM) is investigated theoretically and experimentally. Influences of the microwave power, pulse width, polarization and the plasma electron density on the protection performance of the plasma array against HPM are studied. The results show that the effect of HPM is caused by energy accumulation, with the gas breakdown emerging only after a short time. The attenuation of the wave by the plasma array with the tubes off can reach approximately 23 dB at 1.3 GHz. It can also be obtained that the protection performance of the plasma array against the TE wave is better than that against the TM one. The plasma array shows better protection performance in the L-band than in the C-band. In addition,the attenuation of 5.6 GHz HPM can reach 30 dB when the tubes are turned on in the experiment.The research shows that the plasma array has protection ability against HPM.展开更多
Plasma filling can dramatically improve the performance of high power microwave devices. The characteristics of high-power microwave propagation along plasma filled waveguides in an axial magnetic field are analyzed i...Plasma filling can dramatically improve the performance of high power microwave devices. The characteristics of high-power microwave propagation along plasma filled waveguides in an axial magnetic field are analyzed in this paper, and the ponderomotive force effect of high power microwave is taken into consideration. Theoretical analysis and preliminary numerical calculations are performed. The analyses show that the ponderomotive effect would change the plasma density, distribution of microwave field intensity, and dispersion of wave propagation. The higher the microwave power, the stronger the ponderomotive effect. In different magnetic fields, the ponderomotive effect is different.展开更多
A novel plasma limiter, in which the plasma is excited by surface wave, is presented. The breakdown time of some gases filled in the limiter were calculated as a function of gas pres- sure, ionization degree and densi...A novel plasma limiter, in which the plasma is excited by surface wave, is presented. The breakdown time of some gases filled in the limiter were calculated as a function of gas pres- sure, ionization degree and density of seed electrons under low pressure (0.01 -1 Torr) and high pressure (10 -1000 Torr) cases. The results show that the limiter filled with Xe with a pressure of 0.9 Torr, seed electron density of 10^16 m^-3, and ionization degree of 10^-4, has a breakdown time of approximate 19.6 ns.展开更多
To study the impact of plasma generated by microwave breakdown on the propagation properties of microwave in high power microwave(HPM) devices, a three-dimensional(3-D) fluid model of argon plasma slab in rectangular ...To study the impact of plasma generated by microwave breakdown on the propagation properties of microwave in high power microwave(HPM) devices, a three-dimensional(3-D) fluid model of argon plasma slab in rectangular waveguide is established and calculated by the finite-difference-time-domain(FDTD) method. A rectangular waveguide with a breakdown chamber filled with argon is set as the physics model, and HPM with frequency of 3–50 GHz propagates through this physics model. The time evolutions of the breakdown process are investigated, the reflection, transmission, and absorption coefficients of HPM are calculated, and the influences of some important parameters, including the thickness of the plasma slab and the microwave frequency on the propagation properties of the microwave are shown. Results of this work can offer theoretical instructions for suppressing the influence of breakdown to the performance of HPM devices, and for the use of microwave breakdown, such as the design of plasma limiter or absorber in HPM devices.展开更多
ith the aid of a fibre optical device, the profile of plasma parameters, such as plasma length and noise power spectrum, in a normally enclosed TM 010 cavity was probed. Experimental results show that the physical len...ith the aid of a fibre optical device, the profile of plasma parameters, such as plasma length and noise power spectrum, in a normally enclosed TM 010 cavity was probed. Experimental results show that the physical length of a plasma is linearly related to the microwave power applied and that the profile of noise power spectra varies significantly along the length of a plasma.展开更多
Abstract The magnetically insulated line oscillator (MILO) is a gigawatt-class, coaxial crossed-field microwave tube, which is at present a major hotspot in the field of high-power mi- crowaves (HPM) research. In ...Abstract The magnetically insulated line oscillator (MILO) is a gigawatt-class, coaxial crossed-field microwave tube, which is at present a major hotspot in the field of high-power mi- crowaves (HPM) research. In order to improve the power conversion efficiency and eliminate or at least minimize anode plasma formation in the load region and radio frequency (RF) breakdown in the slow wave structure (SWS) section, an X-band MILO is presented and inyestigated nu- merically with KARAT code. The design idea is briefly presented and the simulation results are given and discussed. In the simulation, HPM is generated with peak power of 3.4 GW, maximum electric field of about 1 MV/cm, and peak power conversion efficiency of 14.0%, when the voltage is 559.1 kV and the current is 43.2 kA. The microwave frequency is pure and falls in the X-band of 9.0 GHz. The theoretical investigation and the simulation results are given to prove that the anode plasma formation and the RF breakdown can be effectively avoided or at least minimized, respectively.展开更多
The propagation of the high-power microwave(HPM) with a frequency of 6 GHz in the lowpressure argon plasma was studied by the method of fluid approximation.The two-dimensional transmission model was built based on t...The propagation of the high-power microwave(HPM) with a frequency of 6 GHz in the lowpressure argon plasma was studied by the method of fluid approximation.The two-dimensional transmission model was built based on the wave equation,the electron drift-diffusion equations and the heavy species transport equations,which were solved by means of COMSOL Multiphysics software.The simulation results showed that the propagation characteristic of the HPM was closely related to the average electron density of the plasma.The attenuation of the transmitted wave increased nonlinearly with the electron density.Specifically,the growth of the attenuation slowed down as the electron density increased uniformly.In addition,the concrete transmission process of the HPM wave in the low-pressure argon plasma was given.展开更多
基金supported by the National High Technology Research and Development Program of China (Grant No. 2015AA0392)
文摘The argon plasma induced by the L-/C-band high-power microwave(HPM) is investigated theoretically and experimentally. Influences of the microwave power, pulse width, polarization and the plasma electron density on the protection performance of the plasma array against HPM are studied. The results show that the effect of HPM is caused by energy accumulation, with the gas breakdown emerging only after a short time. The attenuation of the wave by the plasma array with the tubes off can reach approximately 23 dB at 1.3 GHz. It can also be obtained that the protection performance of the plasma array against the TE wave is better than that against the TM one. The plasma array shows better protection performance in the L-band than in the C-band. In addition,the attenuation of 5.6 GHz HPM can reach 30 dB when the tubes are turned on in the experiment.The research shows that the plasma array has protection ability against HPM.
基金supported by the Fundamental Research Funds for Central Universities of China(No.ZYGX2010J049)
文摘Plasma filling can dramatically improve the performance of high power microwave devices. The characteristics of high-power microwave propagation along plasma filled waveguides in an axial magnetic field are analyzed in this paper, and the ponderomotive force effect of high power microwave is taken into consideration. Theoretical analysis and preliminary numerical calculations are performed. The analyses show that the ponderomotive effect would change the plasma density, distribution of microwave field intensity, and dispersion of wave propagation. The higher the microwave power, the stronger the ponderomotive effect. In different magnetic fields, the ponderomotive effect is different.
基金the Equipment Foundation of Equipment Ministry of China(No.51421KG0152)
文摘A novel plasma limiter, in which the plasma is excited by surface wave, is presented. The breakdown time of some gases filled in the limiter were calculated as a function of gas pres- sure, ionization degree and density of seed electrons under low pressure (0.01 -1 Torr) and high pressure (10 -1000 Torr) cases. The results show that the limiter filled with Xe with a pressure of 0.9 Torr, seed electron density of 10^16 m^-3, and ionization degree of 10^-4, has a breakdown time of approximate 19.6 ns.
基金supported by the National Natural Science Foundation of China(Grant No.61331002)
文摘To study the impact of plasma generated by microwave breakdown on the propagation properties of microwave in high power microwave(HPM) devices, a three-dimensional(3-D) fluid model of argon plasma slab in rectangular waveguide is established and calculated by the finite-difference-time-domain(FDTD) method. A rectangular waveguide with a breakdown chamber filled with argon is set as the physics model, and HPM with frequency of 3–50 GHz propagates through this physics model. The time evolutions of the breakdown process are investigated, the reflection, transmission, and absorption coefficients of HPM are calculated, and the influences of some important parameters, including the thickness of the plasma slab and the microwave frequency on the propagation properties of the microwave are shown. Results of this work can offer theoretical instructions for suppressing the influence of breakdown to the performance of HPM devices, and for the use of microwave breakdown, such as the design of plasma limiter or absorber in HPM devices.
文摘ith the aid of a fibre optical device, the profile of plasma parameters, such as plasma length and noise power spectrum, in a normally enclosed TM 010 cavity was probed. Experimental results show that the physical length of a plasma is linearly related to the microwave power applied and that the profile of noise power spectra varies significantly along the length of a plasma.
基金supported by National Natural Science Foundation of China(No.11075210)the Special Financial Grant from the China Postdoctoral Science Foundation(No.201104761)
文摘Abstract The magnetically insulated line oscillator (MILO) is a gigawatt-class, coaxial crossed-field microwave tube, which is at present a major hotspot in the field of high-power mi- crowaves (HPM) research. In order to improve the power conversion efficiency and eliminate or at least minimize anode plasma formation in the load region and radio frequency (RF) breakdown in the slow wave structure (SWS) section, an X-band MILO is presented and inyestigated nu- merically with KARAT code. The design idea is briefly presented and the simulation results are given and discussed. In the simulation, HPM is generated with peak power of 3.4 GW, maximum electric field of about 1 MV/cm, and peak power conversion efficiency of 14.0%, when the voltage is 559.1 kV and the current is 43.2 kA. The microwave frequency is pure and falls in the X-band of 9.0 GHz. The theoretical investigation and the simulation results are given to prove that the anode plasma formation and the RF breakdown can be effectively avoided or at least minimized, respectively.
基金supported by National High Technology Research and Development Program of China(Grant No.2015AA8016029A)
文摘The propagation of the high-power microwave(HPM) with a frequency of 6 GHz in the lowpressure argon plasma was studied by the method of fluid approximation.The two-dimensional transmission model was built based on the wave equation,the electron drift-diffusion equations and the heavy species transport equations,which were solved by means of COMSOL Multiphysics software.The simulation results showed that the propagation characteristic of the HPM was closely related to the average electron density of the plasma.The attenuation of the transmitted wave increased nonlinearly with the electron density.Specifically,the growth of the attenuation slowed down as the electron density increased uniformly.In addition,the concrete transmission process of the HPM wave in the low-pressure argon plasma was given.