In recent years,with the global climate change,the frequency and duration of high temperature in summer and autumn have increased,causing high temperature heat damage to summer crops such as rice and maize.From the en...In recent years,with the global climate change,the frequency and duration of high temperature in summer and autumn have increased,causing high temperature heat damage to summer crops such as rice and maize.From the end of July to early August is the main period of high temperature occurrence,during which the daily average temperature above 30℃is a high probability event,and even the highest temperature is above 38℃,while this period coincides with the booting-blooming-filling stage of the single-season middle rice in Jianghuai,especially the middle-season indica rice,so it often leads to the degradation of rice spikelets,pollen abortion,difficulty in pollen dispersion,and even difficulty in heading,resulting in a serious decline in the seed setting rate and poor filling of grains,which finally affect the yield and quality.Based on the goal of high-yielding high-quality rice cultivation,this paper proposed targeted technical measures for single-season middle rice from the aspects of planting time sequence optimization,selection of high-temperature-resistant varieties,population construction,fertilizer and water management technology,and how to compensate for the occurrence of unexpected disasters to promote plant growth.This study provides technical support for high-yielding high-quality stress-resistant and disaster-reducing rice cultivation technology.展开更多
Mechanical transplanting has been applied to rice cultivation to save labor costs and ease labor shortages in Asian countries, especially in China. However, little information is available related to the characteristi...Mechanical transplanting has been applied to rice cultivation to save labor costs and ease labor shortages in Asian countries, especially in China. However, little information is available related to the characteristics of agronomic performance when comparing inter-sub-specific hybrid rice(IHR) and inbred japonica rice(IJR) under mechanical transplanting method. In 2013 and 2014, field experiments were conducted using IHR(Yongyou 2640) and IJR(Wuyunjing 24) under two cultivation patterns, that is, pot seedlings mechanically transplanted(PS) and carpet seedlings mechanically transplanted(CS). Grain yield, yield components, leaf area index(LAI), leaf area duration(LAD), aboveground biomass, crop growth rate(CGR), nitrogen(N) uptake, and N accumulation were investigated. When compared with CS, PS displayed significantly increased grain yield for both varieties because the larger sink size allowed higher N accumulation from panicle initiation to maturity. Moreover, total aboveground biomass under PS increased significantly compared with that under CS; that is, higher photosynthetic productivity resulted from a greater LAI and higher LAD during the grain filling stage. Higher N absorption capacity in the middle and late growth periods resulted in significantly enhanced total N uptake under PS. When compared with IJR for both treatments, IHR generated 75.2% more grain yield. However, the characteristics creating high yield of IHR were different from those of IJR. Greater aboveground biomass production as well as higher N uptake and accumulation created higher grain yield in IHR than in IJR. These results suggest higher yield could be achieved using PS with IHR, attributing to exploit both yield superiority and productive potential.展开更多
基金Supported by Anhui Provincial Science and Technology Major Project(2021d06050002)Anhui Provincial Agricultural Improved Variety Project(Jiebangguashuai).
文摘In recent years,with the global climate change,the frequency and duration of high temperature in summer and autumn have increased,causing high temperature heat damage to summer crops such as rice and maize.From the end of July to early August is the main period of high temperature occurrence,during which the daily average temperature above 30℃is a high probability event,and even the highest temperature is above 38℃,while this period coincides with the booting-blooming-filling stage of the single-season middle rice in Jianghuai,especially the middle-season indica rice,so it often leads to the degradation of rice spikelets,pollen abortion,difficulty in pollen dispersion,and even difficulty in heading,resulting in a serious decline in the seed setting rate and poor filling of grains,which finally affect the yield and quality.Based on the goal of high-yielding high-quality rice cultivation,this paper proposed targeted technical measures for single-season middle rice from the aspects of planting time sequence optimization,selection of high-temperature-resistant varieties,population construction,fertilizer and water management technology,and how to compensate for the occurrence of unexpected disasters to promote plant growth.This study provides technical support for high-yielding high-quality stress-resistant and disaster-reducing rice cultivation technology.
基金the National Key Research Program of China(2016YFD0300503)the Special Fund for Agro-scientific Research in the Public Interest,China(201303102)+2 种基金the Key Research Program of Jiangsu Province,China(BE2016344)the Major Independent Innovation Project in Jiangsu Province,China(CX(15)1002)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Mechanical transplanting has been applied to rice cultivation to save labor costs and ease labor shortages in Asian countries, especially in China. However, little information is available related to the characteristics of agronomic performance when comparing inter-sub-specific hybrid rice(IHR) and inbred japonica rice(IJR) under mechanical transplanting method. In 2013 and 2014, field experiments were conducted using IHR(Yongyou 2640) and IJR(Wuyunjing 24) under two cultivation patterns, that is, pot seedlings mechanically transplanted(PS) and carpet seedlings mechanically transplanted(CS). Grain yield, yield components, leaf area index(LAI), leaf area duration(LAD), aboveground biomass, crop growth rate(CGR), nitrogen(N) uptake, and N accumulation were investigated. When compared with CS, PS displayed significantly increased grain yield for both varieties because the larger sink size allowed higher N accumulation from panicle initiation to maturity. Moreover, total aboveground biomass under PS increased significantly compared with that under CS; that is, higher photosynthetic productivity resulted from a greater LAI and higher LAD during the grain filling stage. Higher N absorption capacity in the middle and late growth periods resulted in significantly enhanced total N uptake under PS. When compared with IJR for both treatments, IHR generated 75.2% more grain yield. However, the characteristics creating high yield of IHR were different from those of IJR. Greater aboveground biomass production as well as higher N uptake and accumulation created higher grain yield in IHR than in IJR. These results suggest higher yield could be achieved using PS with IHR, attributing to exploit both yield superiority and productive potential.