The effects of surface treatment, particle size distribution,rare earth composition and B additive on the high rate discharge performance of hydrogen storage alloys were investigated. It is found that the activity, di...The effects of surface treatment, particle size distribution,rare earth composition and B additive on the high rate discharge performance of hydrogen storage alloys were investigated. It is found that the activity, discharge capacity and high rate dischargeability of the alloys are improved after physical and chemical modification as a result of the increase of the surface area and formation of the electrocatalysis layers, which increase both the electrochemical reaction rate on the alloy surface and H diffusion rate in the alloy bulk. It is also found that both the over-coarse and over-fine particle size increase the contact resistance of the electrode, resulting in a decrease of discharge capacity, deterioration of high rate dischargeability and lower discharge plateau. In another word, a suitable particle size distribution can enhance the alloy activity, discharge capacity and high rate dischargeability. In addition, the high rate dischargeability is enhanced by increasing La content and decreasing Ce content of the alloy composition because of enlargement of the unit cell volume and the improvement of the surface activity. Moreover, B additive resultes in the formation of the second phase, and makes the alloys easier pulverization, which greatly improves the activity, discharge capacity and high rate dischargeability.展开更多
With the rapid emergence of wearable devices, flexible lithium-ion batteries(LIBs) are much more needed than ever. Free-standing graphene-based composite paper electrodes with various active materials have appealed wi...With the rapid emergence of wearable devices, flexible lithium-ion batteries(LIBs) are much more needed than ever. Free-standing graphene-based composite paper electrodes with various active materials have appealed wide applications in flexible LIBs. However, due to the prone-to-restacking feature of graphene layers, a long cycle life at high current densities is rather difficult to be achieved. Herein, a unique threedimensional(3D) hierarchically porous NiO micro-flowers/graphene paper(fNiO/GP) electrode is successfully fabricated. The resulting fNiO/GP electrode shows superior long-term cycling stability at high rates(e.g., storage capacity of 359 mAh/g after 600 cycles at a high current density of 1 A/g). The facile 3D porous structure combines both the advantages of the graphene that is highly conductive and flexible to ensure rapid electrons/ions transfer and buffer the volume expansion of NiO during charge/discharge,and of the micro-sized NiO flowers that induces hierarchical between-layer pores ranging from nanomicro meters to promote the penetration of the electrolyte and prevent the re-stacking of graphene layers. Such structural design will inspire future manufacture of a wide range of active materials/graphene composite electrodes for high performance flexible LIBs.展开更多
Application of amorphous V2O5/carbon/ncodymium oxide (Nd2O3) composite is one ot ways to surmount me lower electrical conductivity of V2O5. A new type of V2O5/carbon/Nd2O3 composite was prepared by mixing vanadium o...Application of amorphous V2O5/carbon/ncodymium oxide (Nd2O3) composite is one ot ways to surmount me lower electrical conductivity of V2O5. A new type of V2O5/carbon/Nd2O3 composite was prepared by mixing vanadium oxide hydrosol, acetone, carbon and Nd2O3 powder. High rate discharge/charge property of the composite electrode was tested electrochemically. This composite with Nd2O3 added shows the improvement of not only the discharge capacity but also cycle durability discharge capacity. The rate capability of the composite cathode also increases with the addition of Nd2O3. Even at 10 A·g^-1 current density, a capacity of about 250 mAh·g^-1 was obtained at 25 ℃. This enhanced rate capability and cycle life are probably caused by the increase in porosity of open pores and short diffusion length of the active material on the lithium-ion insertion.展开更多
This paper reports that high-rate-deposition of microcrystalline silicon solar cells was performed by very-highfrequency plasma-enhanced chemical vapor deposition. These solar cells, whose intrinsic μc-Si:H layers w...This paper reports that high-rate-deposition of microcrystalline silicon solar cells was performed by very-highfrequency plasma-enhanced chemical vapor deposition. These solar cells, whose intrinsic μc-Si:H layers were prepared by using a different total gas flow rate (Ftotal), behave much differently in performance, although their intrinsic layers have similar crystalline volume fraction, opto-electronic properties and a deposition rate of - 1.0 nm/s. The influence of Ftotal on the micro-structural properties was analyzed by Raman and Fourier transformed infrared measurements. The results showed that the vertical uniformity and the compact degree of μc-Si:H thin films were improved with increasing Ftotal. The variation of the microstructure was regarded as the main reason for the difference of the J V parameters. Combined with optical emission spectroscopy, we found that the gas temperature plays an important role in determining the microstructure of thin films. With Ftotal of 300 sccm, a conversion efficiency of 8.11% has been obtained for the intrinsic layer deposited at 8.5 A/s (1 A=0.1 nm).展开更多
The computer simulation of Al three-dimensional crystallite containing grain boundary of special type was carried out and its behaviour under high rate loading was investigated. The molecular dynamics method was used ...The computer simulation of Al three-dimensional crystallite containing grain boundary of special type was carried out and its behaviour under high rate loading was investigated. The molecular dynamics method was used and interaction betwen atoms was described based on pseudopotential method. Vortical character of the atom movements in the grain boundary region is realized under shear loading in certain directions. Back and forth movements of atoms in the direction which is perpendicular to the shear also arise. Amplitude of such movements is approximately equal to an interplanar distance in this direction.展开更多
High Rate Algal Pond (HRAP) was constructed and operated using a mixer device to investigate its capability in treating greywater for reuse in gardening. Physico-chemical and microbiological parameters were monitored....High Rate Algal Pond (HRAP) was constructed and operated using a mixer device to investigate its capability in treating greywater for reuse in gardening. Physico-chemical and microbiological parameters were monitored. With a hydraulic retention time of 7.5 days and a solid retention time of 20 days, the average removal efficiencies (ARE) were 69% and 62% for BOD5 and COD respectively. The ARE for , and were 23%, 52% and 43% respectively. The removal of suspended solids (SS) was unsatisfactory, which could be attributed to the low average algal settling efficiencies of 9.3% and 16.0% achieved after 30 and 60 minutes respectively. The ARE of fecal coliforms, Escherichia coli and enterococci were 2.65, 3.14 and 3.17 log units respectively. In view of the results, the HRAP technology could be adapted for greywater treatment in sahelian regions. However, further studies on the diversity of the algal species growing in the HRAP unit are necessary in order to increase the removal of SS. Hazards of a reuse of the effluents are discussed on the basis of the various qualitative parameters. The residual content of E. coli was varying from 4 CFU per 100 mL. Based on WHO guidelines for greywater reuse in irrigation, the effluents could be used for restricted irrigation (E. coli < 105 CFU per 100 mL). Furthermore, the reuse potential is discussed on the basis of FAO guidelines using SAR (3.03 to 4.11), electrical conductivity (482 to 4500 μS/cm) and pH values (6.45 to 8.6).展开更多
In this paper, we propose a new differential space-time-frequency (DSTF) modulation for MIMOOFDM system with four transmit-antennas and arbitrary receive-antennas, which can improve the transmission rate since it ca...In this paper, we propose a new differential space-time-frequency (DSTF) modulation for MIMOOFDM system with four transmit-antennas and arbitrary receive-antennas, which can improve the transmission rate since it can adopt high order quadrature amplitude modulation (QAM) modulation. Our proposed DSTF scheme embeds some full diversity full rate (FDFR) quasi-orthogonal space-time codes (QOSTBC) with QAM modulation into the frequency intervals and adopts the differential modulation in both time and frequency domains. The simulation results demonstrate that the proposed DSTF scheme can improve transmission rate greatly. Compared with the conventional differential unitary space-time modulation (DUSTM), it can get better transmission performance in high transmission rate for MIMO-OFDM system.展开更多
The transformation and removal of nitrogen was studied in a pilot high rate pond with a surface area of 10.2 m2 and water depth of 60 cm. The pilot unit received wastewater from an existing field scale primary faculta...The transformation and removal of nitrogen was studied in a pilot high rate pond with a surface area of 10.2 m2 and water depth of 60 cm. The pilot unit received wastewater from an existing field scale primary facultative pond at the University of Dar es Salaam. Wastewater samples were collected from the influent and effluent of high rate pond and were analyzed for physical-chemical parameters in the laboratory and in situ. An appropriate model complexity was selected, from which a conceptual model was then developed to model various processes in the system using STELLA 6.0.1 software. The study demonstrated that dominant nitrogen transformation processes in HRP were nitrification and denitrification, which transformed 0.95 and 0.87 gN/m2·d, respectively. These were followed by mineralization (0.37 gN/m2·d), ammonia uptake by microorganisms (0.34 gN/m2·d), volatilization (0.30 gN/m2·d), sedimentation (0.24 gN/m2·d), and regeneration (0.15 gN/m2·d). Uptake of nitrate was not observed because of microorganisms preference for ammonia, which was abundant in the pond. The major nitrogen transformation mechanisms in high rate pond were denitrification, net sedimentation and volatilization, which accounted for 69.1%, 7.1% and 23.8% of the total permanent removal mechanisms of nitrogen in High Rate Pond.展开更多
The non stoichiometric high rate discharge hydrogen storage alloys series MlNi 3.85 Co 0.45 Mn 0.4 Al 0.3 X 0.1 (Ml represents the lanthanum rich mischmetal, and X=Mg,Si,Sn) were prepared. The XRD and EDS results show...The non stoichiometric high rate discharge hydrogen storage alloys series MlNi 3.85 Co 0.45 Mn 0.4 Al 0.3 X 0.1 (Ml represents the lanthanum rich mischmetal, and X=Mg,Si,Sn) were prepared. The XRD and EDS results show that the high catalysis active miscellaneous La 2Ni 7 phase forms except for main phase LaNi 5 in the alloy body. The high rate discharge performance of hydrogen storage alloys electrode was improved because of the formation of La 2Ni 7 phase. The discharge capacities at 0.2C, 1C and 5C discharge rate reach 320 mAh·g -1 , 300 mAh·g -1 and 260 mAh·g -1 respectively when X is (Mg+Si). At the same scanning rate of circular volt—ampere testing, the surface anode oxidation peak current and peak area of the alloy containing (Mg+Si) electrode are far more larger than that of the high cobalt alloy MlNi 3.55 Co 0.75 Mn 0.4 Al 0.3 (AB 5). Furthermore, the cobalt content of the hydrogen storage alloy containing (Mg+Si) decreases by 40% and the high rate discharge performance improves obviously compare to high cobalt AB 5 alloys, it is promising that the hydrogen storage alloy containing (Mg+Si) becomes to an ideal dynamic battery cathode material.展开更多
Sodium-ion batteries(SIBs)have garnered significant interest in energy storage due to their similar working mechanism to lithium ion batteries and abundant reserves of sodium resource.Exploring facile synthesis of a c...Sodium-ion batteries(SIBs)have garnered significant interest in energy storage due to their similar working mechanism to lithium ion batteries and abundant reserves of sodium resource.Exploring facile synthesis of a carbon-based anode materials with capable electrochemical performance is key to promoting the practical application of SIBs.In this work,a combination of petroleum pitch and recyclable sodium chloride is selected as the carbon source and template to obtain hard carbon(HC)anode for SIBs.Carbonization times and temperatures are optimized by assessing the sodium ion storage behavior of different HC materials.The optimized HC exhibits a remarkable capacity of over 430 mAh·g^(-1) after undergoing full activation through 500 cycles at a density of current of 0.1 A·g^(-1).Furthermore,it demonstrates an initial discharge capacity of 276 mAh·g^(-1) at a density of current of 0.5 A·g^(-1).Meanwhile,the optimized HC shows a good capacity retention(170 mAh·g^(-1) after 750 cycles)and a remarkable rate ability(166 mAh·g^(-1) at 2 A·g^(-1)).The enhanced capacity is attributed to the suitable degree of graphitization and surface area,which improve the sodium ion transport and storage.展开更多
The high specific capacity and low negative electrochemical potential of lithium metal anodes(LMAs),may allow the energy density threshold of Li metal batteries(LMBs)to be pushed higher.However,the existing detrimenta...The high specific capacity and low negative electrochemical potential of lithium metal anodes(LMAs),may allow the energy density threshold of Li metal batteries(LMBs)to be pushed higher.However,the existing detrimental issues,such as dendritic growth and volume expansion,have hindered the practical implementation of LMBs.Introducing three-dimensional frameworks(e.g.,copper and nickel foam),have been regarded as one of the fundamental strategies to reduce the local current density,aiming to extend the Sand'time.Nevertheless,the local environment far from the skeleton is almost the same as the typical plane Li,due to macroporous space of metal foam.Herein,we built a double-layered 3D current collector of Li alloy anchored on the metal foam,with micropores interconnected macropores,via a viable thermal infiltration and cooling strategy.Due to the excellent electronic and ionic conductivity coupled with favorable lithiophilicity,the Li alloy can effectively reduce the nucleation barrier and enhance the Li^(+)transportation rate,while the metal foam can role as the primary promotor to enlarge the surface area and buffer the dimensional variation.Synergistically,the Li composite anode with hierarchical structure of primary and secondary scaffolds realized the even deposition behavior and minimum volume expansion,outputting preeminent prolonged cycling performances under high rate.展开更多
The Shanghai high-repetition-rate X-ray free-electron laser and extreme light facility(SHINE)operates at a maximum repetition rate of 1 MHz.Kicker magnets are key components that distribute electron bunches into three...The Shanghai high-repetition-rate X-ray free-electron laser and extreme light facility(SHINE)operates at a maximum repetition rate of 1 MHz.Kicker magnets are key components that distribute electron bunches into three different undulator lines in a bunch-by-bunch mode.The kicker field width must be less than the time interval between bunches.A lumpedinductance kicker prototype was developed using a vacuum chamber with a single-turn coil.The full magnetic field strength was 0.005 T.This paper presents the requirements,design considerations,design parameters,magnetic field calculations,and measurements of the kicker magnets.The relevant experimental results are also presented.The pulse width of the magnetic field was approximately 600 ns,and the maximum operation repetition rate was 1 MHz.The developed kicker satisfies the requirements for the SHINE project.Finally,numerous recommendations for the future optimization of kicker magnets are provided.展开更多
High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic ...High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic mechanical properties of shale.Dynamic experiments on shale subjected to true triaxial compression at different strain rates are first conducted in this research.The dynamic stress-strain curves,peak strain,peak stress and failure modes of shale are investigated.The results of the study indicate that the intermediate principal stress and the minor principal stress have the significant influence on the dynamic mechanical behaviors,although this effect decreases as the strain rate increases.The characteristics of compression-shear failure primarily occur in shale subjected to triaxial compression at high strain rates,which distinguishes it from the fragmentation characteristics observed in shale under dynamic uniaxial compression.Additionally,a numerical three-dimensional Split Hopkinson Pressure Bar(3D-SHPB),which is established by coupling PFC3D and FLAC3D methods,is validated to replicate the laboratory characteristics of shale.The dynamic mechanical characteristics of shale subjected to different confining stresses are systematically investigated by the coupling PFC3D and FLAC3D method.The numerical results are in good agreement with the experimental data.展开更多
It is highly desirable for the promising sodium storage possessing high rate and long stable capability,which are mainly hindered by the unstable yet conventional solvent-derived organic-rich solid electrolyte interph...It is highly desirable for the promising sodium storage possessing high rate and long stable capability,which are mainly hindered by the unstable yet conventional solvent-derived organic-rich solid electrolyte interphases.Herein,an electrolyte solvation chemistry is elaborately manipulated to produce an enhanced anion-derived and inorganic components-dominated solid electrolyte interphases by introducing a low permittivity(4.33)bis(2,2,2-trifluoroethyl)ether diluent into the sodium bis(trifluoromethylsulfonyl)imidedimethoxyethane-based high concentration electrolyte to obtain a localized high concentration electrolyte.The bis(2,2,2-trifluoroethyl)ether breaks the balance of original cation solvation structure and tends to interact with Na^(+)-coordinated dimethoxyethane solvent rather than Na^(+)in high concentration electrolyte,leaving an enhanced Coulombic interaction between Na^(+)and(FSO_(2))_(2)N^(-),and more(FSO_(2))_(2)N^(-)can enter the Na^(+)solvation shell,forming a further increased number of Na^(+)-(FSO_(2))_(2)N^(-)-dimethoxyethane clusters(from 82.0%for high concentration electrolyte to 94.3%for localized high concentration electrolyte)at a low salt dosage.The preferential reduction of this(FSO_(2))_(2)N^(-)-enriched clusters rather than the dimethoxyethane-dominated Na^(+)solvation structure produces an enhanced anion-derived and inorganic components-dominated solid electrolyte interphases.The reversible charge storage process of Na is decoupled by operando Raman along with a shift of D and G peaks.Benefiting from the enhanced anion-derived electrode-electrolyte interface,the commercial hard carbon anode in localized high concentration electrolyte shows a well rate capability(5 A g^(−1),70 mAh g^(−1)),cycle performance and stability(85%of initial capacity after 700 cycles)in comparison to that of high concentration electrolyte(68%)and low concentration electrolyte(only 5%after 400 cycles),indicative of uniqueness and superiorities towards stable Na storage.展开更多
The lithium iron phosphate battery(LiFePO4 or LFP)does not satisfactorily deliver the necessary high rates and low temperatures due to its low Li+diffusivity,which greatly limits its applications.The solid-solution re...The lithium iron phosphate battery(LiFePO4 or LFP)does not satisfactorily deliver the necessary high rates and low temperatures due to its low Li+diffusivity,which greatly limits its applications.The solid-solution reaction,compared with the traditional two-phase transition,needs less energy,and the lithium ion diffusivity is also higher,which makes breaking the barrier of LFP possible.However,the solid-solution reaction in LFP can only occur at high rates due to the lattice stress caused by the bulk elastic modulus.Herein,pomegranate-like LFP@C nanoclusters with ultrafine LFP@C subunits(8 nm)(PNCsLFP)were synthesized.Using in situ X-ray diffraction,we confirmed that PNCsLFP can achieve complete solid-solution reaction at the relatively low rate of 0.1C which breaks the limitation of low lithium ion diffusivity of the traditional LFP and frees the lithium ion diffusivity from temperature constraints,leading to almost the same lithium ion diffusivities at room temperature,0,−20,and−40℃.The complete solid-solution reaction at all rates breaks the shackles of limited lithium ion diffusivity on LFP and offers a promising solution for next-generation lithium ion batteries with high rate and low temperature applications.展开更多
The self-absorption effect in laser-induced breakdown spectroscopy(LIBS)reduces the accuracy of quantitative measurement results.The self-absorption-free LIBS(SAF-LIBS)has been proved to directly capture the optically...The self-absorption effect in laser-induced breakdown spectroscopy(LIBS)reduces the accuracy of quantitative measurement results.The self-absorption-free LIBS(SAF-LIBS)has been proved to directly capture the optically thin plasma spectra by setting an appropriate exposure time.In this work,a novel SAF-LIBS technique with high repetition rate acousto-optic gating is developed,in which an acousto-optic modulator is used as the shutter to diffract the optically thin fluorescence,and a high repetition rate laser is used to produce quasi-continuous plasmas to enhance the integral spectral intensity,so that the CCD spectrometer can replace an intensified CCD(ICCD)and echelle spectrometer in SAF-LIBS.Experimental results show that the average absolute prediction error of aluminum is reduced to 0.18%,which is equivalent to that of traditional SAF-LIBS.This technique not only effectively shields continuous background radiation and broadened spectral lines in optically thick plasma,but also has advantages of miniaturization,low cost,convenience and reliability.展开更多
Synthesis of the spinel structure lithium manganese oxide (LiMn2O4) by supercritical hydrothermal (SH) accelerated solid state reaction (SSR) route was studied. The impacts of the reaction pressure, reaction tem...Synthesis of the spinel structure lithium manganese oxide (LiMn2O4) by supercritical hydrothermal (SH) accelerated solid state reaction (SSR) route was studied. The impacts of the reaction pressure, reaction temperature and reaction time of SH route, and the calcination temperature of SSR route on the purity, particle morphology and electrochemical properties of the prepared LiMn2O4 materials were studied. The experimental results show that after 15 min reaction in SH route at 400 ℃ and 30 MPa, the reaction time of SSR could be significantly decreased, e.g. down to 3 h with the formation temperature of 800 ℃, compared with the conventional solid state reaction method. The prepared LiMn2O4 material exhibits good crystallinity, uniform size distribution and good electrochemical performance, and has an initial specific capacity of 120 mA.h/g at a rate of 0.1C (1C=148 mA/g) and a good rate capability at high rates, even up to 50C.展开更多
Amazon’s internal and external environments were analyzed using PEST and SWOT models.Taking into account of relevant literature on strategic human resource management(SHRM)and models like the Harvard model and the hu...Amazon’s internal and external environments were analyzed using PEST and SWOT models.Taking into account of relevant literature on strategic human resource management(SHRM)and models like the Harvard model and the human resource management/industrial relation(HRM/IR)model,the reasons for Amazon’s employee high turnover rate were analyzed.In this paper,several solutions to this issue are indicated,including improving incentive policies and organizing training.At the end of this paper,my personal experiences and the lessons learned throughout the course are summarized.展开更多
Slickwater fracturing fluids are widely used in the development of unconventional oil and gas resources due to the advantages of low cost,low formation damage and high drag reduction performance.However,their performa...Slickwater fracturing fluids are widely used in the development of unconventional oil and gas resources due to the advantages of low cost,low formation damage and high drag reduction performance.However,their performance is severely affected at high temperatures.Drag reducing agent is the key to determine the drag reducing performance of slickwater.In this work,in order to further improve the temperature resistance of slickwater,a temperature-resistant polymeric drag reducing agent(PDRA)was synthesized and used as the basis for preparing the temperature-resistant slickwater.The slickwater system was prepared with the compositions of 0.2 wt%PDRA,0.05 wt%drainage aid nonylphenol polyoxyethylene ether phosphate(NPEP)and 0.5 wt%anti-expansion agent polyepichlorohydrindimethylamine(PDM).The drag reduction ability,rheology properties,temperature and shear resistance ability,and core damage property of slickwater were systematically studied and evaluated.In contrast to on-site drag reducing agent(DRA)and HPAM,the temperature-resistant slickwater demonstrates enhanced drag reduction efficacy at 90℃,exhibiting superior temperature and shear resistance ability.Notably,the drag reduction retention rate for the slickwater achieved an impressive 90.52%after a 30-min shearing period.Additionally,the core damage is only 5.53%.We expect that this study can broaden the application of slickwater in high-temperature reservoirs and provide a theoretical basis for field applications.展开更多
Introduction: High blood pressure is defined as blood pressure greater than or equal to 140 mm Hg for systolic and or 90 mm Hg for diastolic. It constitutes a major public health problem, the leading chronic disease i...Introduction: High blood pressure is defined as blood pressure greater than or equal to 140 mm Hg for systolic and or 90 mm Hg for diastolic. It constitutes a major public health problem, the leading chronic disease in the world. The objective was to determine the prevalence, treatment rate and control of hypertension. Methods: This was a cross-sectional and descriptive study which took place over a period of 6 months in a hospital environment and in the general population. Results: Of the 1000 participants, 637 had hypertension, giving a prevalence of 63.70% with a female predominance. Thirty-three percent (33%) were unaware of their high blood pressure. The age group 60 and more was the most represented (44%). A proportion of 33 and 23.20 were overweight and obese participants, respectively. Male subjects were more overweight than female, unlike obesity which was more common among female subjects. Sixty-two percent (62%) of hypertensives were treated, of whom 44% were non-compliant. The excessively high cost and consumption of medications as needed were the main factors in therapeutic non-compliance. Twenty-two percent (22%) of all hypertensive patients and 35% of treated hypertensive patients were controlled. Women were more treated but less observant and less controlled than men. Therapeutic coverage and combination therapy rates were lower in rural areas. Hypertensives who had a high level of education were better treated and controlled than those who had no level. Conclusion: High blood pressure remains a real public health problem in Mali. It is more common in people aged 60 and over and in females. One in three hypertensives were unaware of their hypertension. The majority received antihypertensive treatments, but only a minority of them had their hypertension controlled.展开更多
文摘The effects of surface treatment, particle size distribution,rare earth composition and B additive on the high rate discharge performance of hydrogen storage alloys were investigated. It is found that the activity, discharge capacity and high rate dischargeability of the alloys are improved after physical and chemical modification as a result of the increase of the surface area and formation of the electrocatalysis layers, which increase both the electrochemical reaction rate on the alloy surface and H diffusion rate in the alloy bulk. It is also found that both the over-coarse and over-fine particle size increase the contact resistance of the electrode, resulting in a decrease of discharge capacity, deterioration of high rate dischargeability and lower discharge plateau. In another word, a suitable particle size distribution can enhance the alloy activity, discharge capacity and high rate dischargeability. In addition, the high rate dischargeability is enhanced by increasing La content and decreasing Ce content of the alloy composition because of enlargement of the unit cell volume and the improvement of the surface activity. Moreover, B additive resultes in the formation of the second phase, and makes the alloys easier pulverization, which greatly improves the activity, discharge capacity and high rate dischargeability.
基金financially supported by the National Key R&D Program of China (No.2017YFE0111500)the National Natural Science Foundation of China (No.51673123 and 51222305)Sichuan Province Science and Technology Project (No.2016JQ0049)。
文摘With the rapid emergence of wearable devices, flexible lithium-ion batteries(LIBs) are much more needed than ever. Free-standing graphene-based composite paper electrodes with various active materials have appealed wide applications in flexible LIBs. However, due to the prone-to-restacking feature of graphene layers, a long cycle life at high current densities is rather difficult to be achieved. Herein, a unique threedimensional(3D) hierarchically porous NiO micro-flowers/graphene paper(fNiO/GP) electrode is successfully fabricated. The resulting fNiO/GP electrode shows superior long-term cycling stability at high rates(e.g., storage capacity of 359 mAh/g after 600 cycles at a high current density of 1 A/g). The facile 3D porous structure combines both the advantages of the graphene that is highly conductive and flexible to ensure rapid electrons/ions transfer and buffer the volume expansion of NiO during charge/discharge,and of the micro-sized NiO flowers that induces hierarchical between-layer pores ranging from nanomicro meters to promote the penetration of the electrolyte and prevent the re-stacking of graphene layers. Such structural design will inspire future manufacture of a wide range of active materials/graphene composite electrodes for high performance flexible LIBs.
文摘Application of amorphous V2O5/carbon/ncodymium oxide (Nd2O3) composite is one ot ways to surmount me lower electrical conductivity of V2O5. A new type of V2O5/carbon/Nd2O3 composite was prepared by mixing vanadium oxide hydrosol, acetone, carbon and Nd2O3 powder. High rate discharge/charge property of the composite electrode was tested electrochemically. This composite with Nd2O3 added shows the improvement of not only the discharge capacity but also cycle durability discharge capacity. The rate capability of the composite cathode also increases with the addition of Nd2O3. Even at 10 A·g^-1 current density, a capacity of about 250 mAh·g^-1 was obtained at 25 ℃. This enhanced rate capability and cycle life are probably caused by the increase in porosity of open pores and short diffusion length of the active material on the lithium-ion insertion.
基金supported by the National Basic Research Program of China (Grant Nos 2006CB202602 and 2006CB202603)the Tianjin Assistant Foundation for the National Basic Research Program of China (Grant No 07QTPTJC29500)the Natural Science Foundation of Tianjin (Grant No 07JCYBJC04000)
文摘This paper reports that high-rate-deposition of microcrystalline silicon solar cells was performed by very-highfrequency plasma-enhanced chemical vapor deposition. These solar cells, whose intrinsic μc-Si:H layers were prepared by using a different total gas flow rate (Ftotal), behave much differently in performance, although their intrinsic layers have similar crystalline volume fraction, opto-electronic properties and a deposition rate of - 1.0 nm/s. The influence of Ftotal on the micro-structural properties was analyzed by Raman and Fourier transformed infrared measurements. The results showed that the vertical uniformity and the compact degree of μc-Si:H thin films were improved with increasing Ftotal. The variation of the microstructure was regarded as the main reason for the difference of the J V parameters. Combined with optical emission spectroscopy, we found that the gas temperature plays an important role in determining the microstructure of thin films. With Ftotal of 300 sccm, a conversion efficiency of 8.11% has been obtained for the intrinsic layer deposited at 8.5 A/s (1 A=0.1 nm).
文摘The computer simulation of Al three-dimensional crystallite containing grain boundary of special type was carried out and its behaviour under high rate loading was investigated. The molecular dynamics method was used and interaction betwen atoms was described based on pseudopotential method. Vortical character of the atom movements in the grain boundary region is realized under shear loading in certain directions. Back and forth movements of atoms in the direction which is perpendicular to the shear also arise. Amplitude of such movements is approximately equal to an interplanar distance in this direction.
文摘High Rate Algal Pond (HRAP) was constructed and operated using a mixer device to investigate its capability in treating greywater for reuse in gardening. Physico-chemical and microbiological parameters were monitored. With a hydraulic retention time of 7.5 days and a solid retention time of 20 days, the average removal efficiencies (ARE) were 69% and 62% for BOD5 and COD respectively. The ARE for , and were 23%, 52% and 43% respectively. The removal of suspended solids (SS) was unsatisfactory, which could be attributed to the low average algal settling efficiencies of 9.3% and 16.0% achieved after 30 and 60 minutes respectively. The ARE of fecal coliforms, Escherichia coli and enterococci were 2.65, 3.14 and 3.17 log units respectively. In view of the results, the HRAP technology could be adapted for greywater treatment in sahelian regions. However, further studies on the diversity of the algal species growing in the HRAP unit are necessary in order to increase the removal of SS. Hazards of a reuse of the effluents are discussed on the basis of the various qualitative parameters. The residual content of E. coli was varying from 4 CFU per 100 mL. Based on WHO guidelines for greywater reuse in irrigation, the effluents could be used for restricted irrigation (E. coli < 105 CFU per 100 mL). Furthermore, the reuse potential is discussed on the basis of FAO guidelines using SAR (3.03 to 4.11), electrical conductivity (482 to 4500 μS/cm) and pH values (6.45 to 8.6).
基金This work was supported in part by the National Natural Science Foundation of China under grant No. 60572117the Natural Science Foundation of Hubei Province under grant No. 2005ABA244.
文摘In this paper, we propose a new differential space-time-frequency (DSTF) modulation for MIMOOFDM system with four transmit-antennas and arbitrary receive-antennas, which can improve the transmission rate since it can adopt high order quadrature amplitude modulation (QAM) modulation. Our proposed DSTF scheme embeds some full diversity full rate (FDFR) quasi-orthogonal space-time codes (QOSTBC) with QAM modulation into the frequency intervals and adopts the differential modulation in both time and frequency domains. The simulation results demonstrate that the proposed DSTF scheme can improve transmission rate greatly. Compared with the conventional differential unitary space-time modulation (DUSTM), it can get better transmission performance in high transmission rate for MIMO-OFDM system.
文摘The transformation and removal of nitrogen was studied in a pilot high rate pond with a surface area of 10.2 m2 and water depth of 60 cm. The pilot unit received wastewater from an existing field scale primary facultative pond at the University of Dar es Salaam. Wastewater samples were collected from the influent and effluent of high rate pond and were analyzed for physical-chemical parameters in the laboratory and in situ. An appropriate model complexity was selected, from which a conceptual model was then developed to model various processes in the system using STELLA 6.0.1 software. The study demonstrated that dominant nitrogen transformation processes in HRP were nitrification and denitrification, which transformed 0.95 and 0.87 gN/m2·d, respectively. These were followed by mineralization (0.37 gN/m2·d), ammonia uptake by microorganisms (0.34 gN/m2·d), volatilization (0.30 gN/m2·d), sedimentation (0.24 gN/m2·d), and regeneration (0.15 gN/m2·d). Uptake of nitrate was not observed because of microorganisms preference for ammonia, which was abundant in the pond. The major nitrogen transformation mechanisms in high rate pond were denitrification, net sedimentation and volatilization, which accounted for 69.1%, 7.1% and 23.8% of the total permanent removal mechanisms of nitrogen in High Rate Pond.
文摘The non stoichiometric high rate discharge hydrogen storage alloys series MlNi 3.85 Co 0.45 Mn 0.4 Al 0.3 X 0.1 (Ml represents the lanthanum rich mischmetal, and X=Mg,Si,Sn) were prepared. The XRD and EDS results show that the high catalysis active miscellaneous La 2Ni 7 phase forms except for main phase LaNi 5 in the alloy body. The high rate discharge performance of hydrogen storage alloys electrode was improved because of the formation of La 2Ni 7 phase. The discharge capacities at 0.2C, 1C and 5C discharge rate reach 320 mAh·g -1 , 300 mAh·g -1 and 260 mAh·g -1 respectively when X is (Mg+Si). At the same scanning rate of circular volt—ampere testing, the surface anode oxidation peak current and peak area of the alloy containing (Mg+Si) electrode are far more larger than that of the high cobalt alloy MlNi 3.55 Co 0.75 Mn 0.4 Al 0.3 (AB 5). Furthermore, the cobalt content of the hydrogen storage alloy containing (Mg+Si) decreases by 40% and the high rate discharge performance improves obviously compare to high cobalt AB 5 alloys, it is promising that the hydrogen storage alloy containing (Mg+Si) becomes to an ideal dynamic battery cathode material.
基金supported by Heilongjiang Province Key R&D Program(Grant No.GA22A014).
文摘Sodium-ion batteries(SIBs)have garnered significant interest in energy storage due to their similar working mechanism to lithium ion batteries and abundant reserves of sodium resource.Exploring facile synthesis of a carbon-based anode materials with capable electrochemical performance is key to promoting the practical application of SIBs.In this work,a combination of petroleum pitch and recyclable sodium chloride is selected as the carbon source and template to obtain hard carbon(HC)anode for SIBs.Carbonization times and temperatures are optimized by assessing the sodium ion storage behavior of different HC materials.The optimized HC exhibits a remarkable capacity of over 430 mAh·g^(-1) after undergoing full activation through 500 cycles at a density of current of 0.1 A·g^(-1).Furthermore,it demonstrates an initial discharge capacity of 276 mAh·g^(-1) at a density of current of 0.5 A·g^(-1).Meanwhile,the optimized HC shows a good capacity retention(170 mAh·g^(-1) after 750 cycles)and a remarkable rate ability(166 mAh·g^(-1) at 2 A·g^(-1)).The enhanced capacity is attributed to the suitable degree of graphitization and surface area,which improve the sodium ion transport and storage.
基金supported by Huzhou Natural Science Foundation Project(Nos.2022YZ04 and 2022YZ21)S&T Special Program of Huzhou(No.2023GZ03)National Natural Science Foundation of China(No.52172184)。
文摘The high specific capacity and low negative electrochemical potential of lithium metal anodes(LMAs),may allow the energy density threshold of Li metal batteries(LMBs)to be pushed higher.However,the existing detrimental issues,such as dendritic growth and volume expansion,have hindered the practical implementation of LMBs.Introducing three-dimensional frameworks(e.g.,copper and nickel foam),have been regarded as one of the fundamental strategies to reduce the local current density,aiming to extend the Sand'time.Nevertheless,the local environment far from the skeleton is almost the same as the typical plane Li,due to macroporous space of metal foam.Herein,we built a double-layered 3D current collector of Li alloy anchored on the metal foam,with micropores interconnected macropores,via a viable thermal infiltration and cooling strategy.Due to the excellent electronic and ionic conductivity coupled with favorable lithiophilicity,the Li alloy can effectively reduce the nucleation barrier and enhance the Li^(+)transportation rate,while the metal foam can role as the primary promotor to enlarge the surface area and buffer the dimensional variation.Synergistically,the Li composite anode with hierarchical structure of primary and secondary scaffolds realized the even deposition behavior and minimum volume expansion,outputting preeminent prolonged cycling performances under high rate.
基金This work was supported by the Shanghai Municipal Science and Technology Major Project(No.2017SHZDZX02)the National Natural Science Foundation of China(No.12005282)+1 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2021283)the Shanghai Pilot Program for Basic Research—Chinese Academy of Science,Shanghai Branch(JCYJSHFY-2021-010).
文摘The Shanghai high-repetition-rate X-ray free-electron laser and extreme light facility(SHINE)operates at a maximum repetition rate of 1 MHz.Kicker magnets are key components that distribute electron bunches into three different undulator lines in a bunch-by-bunch mode.The kicker field width must be less than the time interval between bunches.A lumpedinductance kicker prototype was developed using a vacuum chamber with a single-turn coil.The full magnetic field strength was 0.005 T.This paper presents the requirements,design considerations,design parameters,magnetic field calculations,and measurements of the kicker magnets.The relevant experimental results are also presented.The pulse width of the magnetic field was approximately 600 ns,and the maximum operation repetition rate was 1 MHz.The developed kicker satisfies the requirements for the SHINE project.Finally,numerous recommendations for the future optimization of kicker magnets are provided.
基金supported by the National Natural Science Foundation of China(Nos.51839009 and 52027814)the Natural Science Foundation of Hubei Province(No.2023AFB589).
文摘High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic mechanical properties of shale.Dynamic experiments on shale subjected to true triaxial compression at different strain rates are first conducted in this research.The dynamic stress-strain curves,peak strain,peak stress and failure modes of shale are investigated.The results of the study indicate that the intermediate principal stress and the minor principal stress have the significant influence on the dynamic mechanical behaviors,although this effect decreases as the strain rate increases.The characteristics of compression-shear failure primarily occur in shale subjected to triaxial compression at high strain rates,which distinguishes it from the fragmentation characteristics observed in shale under dynamic uniaxial compression.Additionally,a numerical three-dimensional Split Hopkinson Pressure Bar(3D-SHPB),which is established by coupling PFC3D and FLAC3D methods,is validated to replicate the laboratory characteristics of shale.The dynamic mechanical characteristics of shale subjected to different confining stresses are systematically investigated by the coupling PFC3D and FLAC3D method.The numerical results are in good agreement with the experimental data.
基金partly supported by the Innovation Program of Dalian City of Liaoning Province(no.2019RJ03)National Natural Science Foundation of China(NSFC,no.51872035,22078052)
文摘It is highly desirable for the promising sodium storage possessing high rate and long stable capability,which are mainly hindered by the unstable yet conventional solvent-derived organic-rich solid electrolyte interphases.Herein,an electrolyte solvation chemistry is elaborately manipulated to produce an enhanced anion-derived and inorganic components-dominated solid electrolyte interphases by introducing a low permittivity(4.33)bis(2,2,2-trifluoroethyl)ether diluent into the sodium bis(trifluoromethylsulfonyl)imidedimethoxyethane-based high concentration electrolyte to obtain a localized high concentration electrolyte.The bis(2,2,2-trifluoroethyl)ether breaks the balance of original cation solvation structure and tends to interact with Na^(+)-coordinated dimethoxyethane solvent rather than Na^(+)in high concentration electrolyte,leaving an enhanced Coulombic interaction between Na^(+)and(FSO_(2))_(2)N^(-),and more(FSO_(2))_(2)N^(-)can enter the Na^(+)solvation shell,forming a further increased number of Na^(+)-(FSO_(2))_(2)N^(-)-dimethoxyethane clusters(from 82.0%for high concentration electrolyte to 94.3%for localized high concentration electrolyte)at a low salt dosage.The preferential reduction of this(FSO_(2))_(2)N^(-)-enriched clusters rather than the dimethoxyethane-dominated Na^(+)solvation structure produces an enhanced anion-derived and inorganic components-dominated solid electrolyte interphases.The reversible charge storage process of Na is decoupled by operando Raman along with a shift of D and G peaks.Benefiting from the enhanced anion-derived electrode-electrolyte interface,the commercial hard carbon anode in localized high concentration electrolyte shows a well rate capability(5 A g^(−1),70 mAh g^(−1)),cycle performance and stability(85%of initial capacity after 700 cycles)in comparison to that of high concentration electrolyte(68%)and low concentration electrolyte(only 5%after 400 cycles),indicative of uniqueness and superiorities towards stable Na storage.
基金This work was financially supported by the National Natural Science Foundation of China(grant nos.21771035 and 21872024)the Fundamental Research Funds for the Central Universities(grant nos.2412018ZD009 and 2412019FZ009)the Jilin Provincial Research Foundation for Basic Research(grant nos.20200201071JC and 20190303100SF).
文摘The lithium iron phosphate battery(LiFePO4 or LFP)does not satisfactorily deliver the necessary high rates and low temperatures due to its low Li+diffusivity,which greatly limits its applications.The solid-solution reaction,compared with the traditional two-phase transition,needs less energy,and the lithium ion diffusivity is also higher,which makes breaking the barrier of LFP possible.However,the solid-solution reaction in LFP can only occur at high rates due to the lattice stress caused by the bulk elastic modulus.Herein,pomegranate-like LFP@C nanoclusters with ultrafine LFP@C subunits(8 nm)(PNCsLFP)were synthesized.Using in situ X-ray diffraction,we confirmed that PNCsLFP can achieve complete solid-solution reaction at the relatively low rate of 0.1C which breaks the limitation of low lithium ion diffusivity of the traditional LFP and frees the lithium ion diffusivity from temperature constraints,leading to almost the same lithium ion diffusivities at room temperature,0,−20,and−40℃.The complete solid-solution reaction at all rates breaks the shackles of limited lithium ion diffusivity on LFP and offers a promising solution for next-generation lithium ion batteries with high rate and low temperature applications.
基金National Key R&D Program of China(No.2017YFA0304203)National Energy R&D Center of Petroleum Refining Technology(RIPP,SINOPEC),Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(IRT_17R70)+3 种基金National Natural Science Foundation of China(Nos.61975103,61875108,61775125 and 11434007)Major Special Science and Technology Projects in Shanxi(No.201804D131036)111 Project(No.D18001)Fund for Shanxi’1331KSC’。
文摘The self-absorption effect in laser-induced breakdown spectroscopy(LIBS)reduces the accuracy of quantitative measurement results.The self-absorption-free LIBS(SAF-LIBS)has been proved to directly capture the optically thin plasma spectra by setting an appropriate exposure time.In this work,a novel SAF-LIBS technique with high repetition rate acousto-optic gating is developed,in which an acousto-optic modulator is used as the shutter to diffract the optically thin fluorescence,and a high repetition rate laser is used to produce quasi-continuous plasmas to enhance the integral spectral intensity,so that the CCD spectrometer can replace an intensified CCD(ICCD)and echelle spectrometer in SAF-LIBS.Experimental results show that the average absolute prediction error of aluminum is reduced to 0.18%,which is equivalent to that of traditional SAF-LIBS.This technique not only effectively shields continuous background radiation and broadened spectral lines in optically thick plasma,but also has advantages of miniaturization,low cost,convenience and reliability.
基金Project supported by the Research Funds of the Key Laboratory of Fuel Cell Technology of Guangdong Province,ChinaProject(7411793079907)supported by the Guangzhou Special Foundation for Applied Basic Research+1 种基金Project(2013A15GX048)supported by the Dalian Science and Technology Project Foundation,ChinaProject(21376035)supported by the National Natural Science Foundation of China
文摘Synthesis of the spinel structure lithium manganese oxide (LiMn2O4) by supercritical hydrothermal (SH) accelerated solid state reaction (SSR) route was studied. The impacts of the reaction pressure, reaction temperature and reaction time of SH route, and the calcination temperature of SSR route on the purity, particle morphology and electrochemical properties of the prepared LiMn2O4 materials were studied. The experimental results show that after 15 min reaction in SH route at 400 ℃ and 30 MPa, the reaction time of SSR could be significantly decreased, e.g. down to 3 h with the formation temperature of 800 ℃, compared with the conventional solid state reaction method. The prepared LiMn2O4 material exhibits good crystallinity, uniform size distribution and good electrochemical performance, and has an initial specific capacity of 120 mA.h/g at a rate of 0.1C (1C=148 mA/g) and a good rate capability at high rates, even up to 50C.
文摘Amazon’s internal and external environments were analyzed using PEST and SWOT models.Taking into account of relevant literature on strategic human resource management(SHRM)and models like the Harvard model and the human resource management/industrial relation(HRM/IR)model,the reasons for Amazon’s employee high turnover rate were analyzed.In this paper,several solutions to this issue are indicated,including improving incentive policies and organizing training.At the end of this paper,my personal experiences and the lessons learned throughout the course are summarized.
基金supported by the National Natural Science Foundation of China(Nos.52222403,52074333,52120105007)Taishan Scholar Young Expert(No.tsqn202211079)。
文摘Slickwater fracturing fluids are widely used in the development of unconventional oil and gas resources due to the advantages of low cost,low formation damage and high drag reduction performance.However,their performance is severely affected at high temperatures.Drag reducing agent is the key to determine the drag reducing performance of slickwater.In this work,in order to further improve the temperature resistance of slickwater,a temperature-resistant polymeric drag reducing agent(PDRA)was synthesized and used as the basis for preparing the temperature-resistant slickwater.The slickwater system was prepared with the compositions of 0.2 wt%PDRA,0.05 wt%drainage aid nonylphenol polyoxyethylene ether phosphate(NPEP)and 0.5 wt%anti-expansion agent polyepichlorohydrindimethylamine(PDM).The drag reduction ability,rheology properties,temperature and shear resistance ability,and core damage property of slickwater were systematically studied and evaluated.In contrast to on-site drag reducing agent(DRA)and HPAM,the temperature-resistant slickwater demonstrates enhanced drag reduction efficacy at 90℃,exhibiting superior temperature and shear resistance ability.Notably,the drag reduction retention rate for the slickwater achieved an impressive 90.52%after a 30-min shearing period.Additionally,the core damage is only 5.53%.We expect that this study can broaden the application of slickwater in high-temperature reservoirs and provide a theoretical basis for field applications.
文摘Introduction: High blood pressure is defined as blood pressure greater than or equal to 140 mm Hg for systolic and or 90 mm Hg for diastolic. It constitutes a major public health problem, the leading chronic disease in the world. The objective was to determine the prevalence, treatment rate and control of hypertension. Methods: This was a cross-sectional and descriptive study which took place over a period of 6 months in a hospital environment and in the general population. Results: Of the 1000 participants, 637 had hypertension, giving a prevalence of 63.70% with a female predominance. Thirty-three percent (33%) were unaware of their high blood pressure. The age group 60 and more was the most represented (44%). A proportion of 33 and 23.20 were overweight and obese participants, respectively. Male subjects were more overweight than female, unlike obesity which was more common among female subjects. Sixty-two percent (62%) of hypertensives were treated, of whom 44% were non-compliant. The excessively high cost and consumption of medications as needed were the main factors in therapeutic non-compliance. Twenty-two percent (22%) of all hypertensive patients and 35% of treated hypertensive patients were controlled. Women were more treated but less observant and less controlled than men. Therapeutic coverage and combination therapy rates were lower in rural areas. Hypertensives who had a high level of education were better treated and controlled than those who had no level. Conclusion: High blood pressure remains a real public health problem in Mali. It is more common in people aged 60 and over and in females. One in three hypertensives were unaware of their hypertension. The majority received antihypertensive treatments, but only a minority of them had their hypertension controlled.