Aiming at the problemthat the traditional short-circuit current calculationmethod is not applicable to Distributed Generation(DG)accessing the distribution network,the paper proposes a short-circuit current partitioni...Aiming at the problemthat the traditional short-circuit current calculationmethod is not applicable to Distributed Generation(DG)accessing the distribution network,the paper proposes a short-circuit current partitioning calculation method considering the degree of voltage drop at the grid-connected point of DG.Firstly,the output characteristics of DG in the process of low voltage ride through are analyzed,and the equivalent output model of DG in the fault state is obtained.Secondly,by studying the network voltage distribution law after fault in distribution networks under different DG penetration rates,the degree of voltage drop at the grid-connected point of DG is used as a partition index to partition the distribution network.Then,iterative computation is performed within each partition,and data are transferred between partitions through split nodes to realize the fast partition calculation of short-circuit current for high proportion DG access to distribution network,which solves the problems of long iteration time and large calculation error of traditional short-circuit current.Finally,a 62-node real distribution network model containing a high proportion of DG access is constructed onMATLAB/Simulink,and the simulation verifies the effectiveness of the short-circuit current partitioning calculation method proposed in the paper,and its calculation speed is improved by 48.35%compared with the global iteration method.展开更多
Inter-turn fault is a serious stator winding short-circuit fault of permanent magnet synchronous machine(PMSM). Once it occurs, it produces a huge short-circuit current that poses a great risk to the safe operation of...Inter-turn fault is a serious stator winding short-circuit fault of permanent magnet synchronous machine(PMSM). Once it occurs, it produces a huge short-circuit current that poses a great risk to the safe operation of PMSM. Thus, an inter-turn short-circuit fault(ITSCF) diagnosis method based on high frequency(HF) voltage residual is proposed in this paper with proper HF signal injection. First, the analytical models of PMSM after the ITSCF are deduced. Based on the model, the voltage residual at low frequency(LF) and HF can be obtained. It is revealed that the HF voltage residual has a stronger ITSCF detection capability compared to the LF voltage residual. To obtain optimal fault signature, a 3-phase symmetrical HF voltage is injected into the machine drive system, and the HF voltage residuals are extracted. The fault indicator is defined as the standard deviation of the 3-phase HF voltage residuals. The effectiveness of the proposed ITSCF diagnosis method is verified by experiments on a triple 3-phase PMSM. It is worth noting that no extra hardware equipment is required to implement the proposed method.展开更多
Narrow-bandgap n-type polymers are essential for advancing the development of all-polymer solar cells(all-PSCs).Herein,we developed a novel polymer acceptor PNT withπ-extended 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]nap...Narrow-bandgap n-type polymers are essential for advancing the development of all-polymer solar cells(all-PSCs).Herein,we developed a novel polymer acceptor PNT withπ-extended 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-ylidene)malononitrile(CPNM)end groups.Compared to commonly used 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1ylidene)malononitrile(IC)units,CPNM units have a further extended fused ring,providing the PNT polymer with extended absorption into the near-IR region(903 nm)and exhibiting a narrow optical bandgap(1.37 eV).Furthermore,PNT exhibits a high electron mobility(6.79×10^(−4) cm^(2)·V^(−1)·S^(−1))and a relatively high-lying lowest unoccupied molecular orbital(LUMO)energy level of−3.80 eV.When blended with PBDB-T,all-PSC achieves a power conversion efficiency(PCE)of 13.7%and a high short-circuit current density(JSC)of 24.4 mA·cm^(−2),mainly attributed to broad absorption(600—900 nm)and efficient charge separation and collection.Our study provides a promising polymer acceptor for all-PSCs and demonstrates thatπ-extended CPNM units are important to achieve high-performance for all-PSCs.展开更多
Multi-terminal high voltage DC(MT-HVDC)grid has broad application prospects in connecting different energy sources,asynchronous interconnection of power grids,remote load power supply,and other fields.At present,the k...Multi-terminal high voltage DC(MT-HVDC)grid has broad application prospects in connecting different energy sources,asynchronous interconnection of power grids,remote load power supply,and other fields.At present,the key technologies that affect the development of MT-HVDC transmission system include swift fault identification and location in the DC line and its rapid isolation.Traditional fault monitoring relies on line communication,which cannot guarantee the rapidity and reliability of protection;moreover,it may even cause device damage.A fault identification scheme based on a single-terminal transient is presented in this paper.This scheme calculates the line inductance by using the rise rate of fault current at the initial stage of the fault,and determines the occurrence of the fault by comparing the observed line inductance with the set value,which lays a foundation for calculating the location of the fault point using distance protection.A simulation model on the PSCAD/EMTDC platform is built;the simulation example verifies that the proposed scheme can identify faults under dissimilar conditions while maintaining a low error level on the premise of no communication lines so as to meet the protection requirements of the MT-HVDC grid.展开更多
基金funded by the National Natural Science Foundation of China(52077004)Anhui Electric Power Company of the State Grid(52120021N00L).
文摘Aiming at the problemthat the traditional short-circuit current calculationmethod is not applicable to Distributed Generation(DG)accessing the distribution network,the paper proposes a short-circuit current partitioning calculation method considering the degree of voltage drop at the grid-connected point of DG.Firstly,the output characteristics of DG in the process of low voltage ride through are analyzed,and the equivalent output model of DG in the fault state is obtained.Secondly,by studying the network voltage distribution law after fault in distribution networks under different DG penetration rates,the degree of voltage drop at the grid-connected point of DG is used as a partition index to partition the distribution network.Then,iterative computation is performed within each partition,and data are transferred between partitions through split nodes to realize the fast partition calculation of short-circuit current for high proportion DG access to distribution network,which solves the problems of long iteration time and large calculation error of traditional short-circuit current.Finally,a 62-node real distribution network model containing a high proportion of DG access is constructed onMATLAB/Simulink,and the simulation verifies the effectiveness of the short-circuit current partitioning calculation method proposed in the paper,and its calculation speed is improved by 48.35%compared with the global iteration method.
基金supported in part by the Jiangsu Carbon Peak Carbon Neutralization Science and Technology Innovation Special Fund under Grant BE2022032-1National Natural Science Foundation of China under Grant 52277035, Grant 51937006 and Grant 51907028the “SEU Zhishan Young Scholars” Program of Southeast University。
文摘Inter-turn fault is a serious stator winding short-circuit fault of permanent magnet synchronous machine(PMSM). Once it occurs, it produces a huge short-circuit current that poses a great risk to the safe operation of PMSM. Thus, an inter-turn short-circuit fault(ITSCF) diagnosis method based on high frequency(HF) voltage residual is proposed in this paper with proper HF signal injection. First, the analytical models of PMSM after the ITSCF are deduced. Based on the model, the voltage residual at low frequency(LF) and HF can be obtained. It is revealed that the HF voltage residual has a stronger ITSCF detection capability compared to the LF voltage residual. To obtain optimal fault signature, a 3-phase symmetrical HF voltage is injected into the machine drive system, and the HF voltage residuals are extracted. The fault indicator is defined as the standard deviation of the 3-phase HF voltage residuals. The effectiveness of the proposed ITSCF diagnosis method is verified by experiments on a triple 3-phase PMSM. It is worth noting that no extra hardware equipment is required to implement the proposed method.
基金supported by National Natural Science Foundation of China(NSFC)(No.51973146)Shandong Provincial Natural Science Foundation(ZR2022JQ09)。
文摘Narrow-bandgap n-type polymers are essential for advancing the development of all-polymer solar cells(all-PSCs).Herein,we developed a novel polymer acceptor PNT withπ-extended 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-ylidene)malononitrile(CPNM)end groups.Compared to commonly used 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1ylidene)malononitrile(IC)units,CPNM units have a further extended fused ring,providing the PNT polymer with extended absorption into the near-IR region(903 nm)and exhibiting a narrow optical bandgap(1.37 eV).Furthermore,PNT exhibits a high electron mobility(6.79×10^(−4) cm^(2)·V^(−1)·S^(−1))and a relatively high-lying lowest unoccupied molecular orbital(LUMO)energy level of−3.80 eV.When blended with PBDB-T,all-PSC achieves a power conversion efficiency(PCE)of 13.7%and a high short-circuit current density(JSC)of 24.4 mA·cm^(−2),mainly attributed to broad absorption(600—900 nm)and efficient charge separation and collection.Our study provides a promising polymer acceptor for all-PSCs and demonstrates thatπ-extended CPNM units are important to achieve high-performance for all-PSCs.
基金Supported by the National Natural Science Foundation of China(51767014)the Scientific and Technological Research and Development Program of the China Railway(2017J010-C/2017).
文摘Multi-terminal high voltage DC(MT-HVDC)grid has broad application prospects in connecting different energy sources,asynchronous interconnection of power grids,remote load power supply,and other fields.At present,the key technologies that affect the development of MT-HVDC transmission system include swift fault identification and location in the DC line and its rapid isolation.Traditional fault monitoring relies on line communication,which cannot guarantee the rapidity and reliability of protection;moreover,it may even cause device damage.A fault identification scheme based on a single-terminal transient is presented in this paper.This scheme calculates the line inductance by using the rise rate of fault current at the initial stage of the fault,and determines the occurrence of the fault by comparing the observed line inductance with the set value,which lays a foundation for calculating the location of the fault point using distance protection.A simulation model on the PSCAD/EMTDC platform is built;the simulation example verifies that the proposed scheme can identify faults under dissimilar conditions while maintaining a low error level on the premise of no communication lines so as to meet the protection requirements of the MT-HVDC grid.