The morphology changes of both Fe-containing intermetallic compounds and the primary Si phase of Al-20Si-2Fe- 2Cu-0.4Mg-1.0Ni-0.5Mn (mass fraction, %) alloy produced by semi-solid rheo-diecasting were studied. The s...The morphology changes of both Fe-containing intermetallic compounds and the primary Si phase of Al-20Si-2Fe- 2Cu-0.4Mg-1.0Ni-0.5Mn (mass fraction, %) alloy produced by semi-solid rheo-diecasting were studied. The semi-solid slurry of high silicon aluminum alloy was prepared by direct ultrasonic vibration (DUV) which was imposed on the alloy near the liquidus temperature for about 2 rain. Then, standard test samples of 6.4 mm in diameter were formed by semi-solid rheo-diecasting. The results show that the DUV treatment suppresses the formation of needle-like ,β-Al5(Fe,Mn)Si phase, and the Fe-containing intermetallic compounds exist in the form of fine Al4(Fe, Mn)Si2 particles. Additionally, the primary Si grows up as fine and round particles with uniform distribution in α(Al) matrix of this alloy under DUV treatment. The tensile strengths of the samples at the room temperature and 573 K are 230 MPa and 145 MPa, respectively. The coefficient of thermal expansion (CTE) between 25 ℃ and 300 ℃ is 16.052 8×10^-6 ℃^-1, and the wear rate is 1.55%. The hardness of this alloy with 2% Fe reaches HB146.3. It is discovered that modified morphology and uniform distribution of the Fe-containing intermetallic compounds and the primary Si phase are the main reasons for reducing the CTE and increasing the wear resistance of this alloy.展开更多
The P + Sr + Ce compound modification technologies of as-cast Al-21Si-1.5Cu-1.5Ni- 2.5Fe- 0.5Mg alloy were investigated by means of orthogonal test. Orthogonal test results show that 3% (CaH2PO4 + 2CASO4)+ 0.2%...The P + Sr + Ce compound modification technologies of as-cast Al-21Si-1.5Cu-1.5Ni- 2.5Fe- 0.5Mg alloy were investigated by means of orthogonal test. Orthogonal test results show that 3% (CaH2PO4 + 2CASO4)+ 0.2%Sr + 0.2%Ce is the optimum additive of modification treatment which can fine eutectic and primary silicon also can change the form of rich-iron phase at same time. The needle form of rich-iron phase is Al9FeSi3, which is prored by X-ray diffraction analysis and X-ray energy spectrum analysis. After compound modification treatment, the needle form of rich-iron phase disappeared and the fish bone form of rich-iron and rich-Ce phase that is AlsCeFe emerged. Both at room temperature and at 300℃, the tensile strength of the alloy after the modification treatment with the optimum additive is 30% lager than that of the alloy unmodified. Observed by SEM, the brittle intercrystalline tensile fracture changed into a blended one in which has many dimples.展开更多
A high content silicon aluminum alloy(Al-25Si-4Cu-1Mg)coating was prepared on a 2A12 aluminum alloy by supersonic plasma spraying.The morphology and microstructure of the coating were observed and analyzed.The hardnes...A high content silicon aluminum alloy(Al-25Si-4Cu-1Mg)coating was prepared on a 2A12 aluminum alloy by supersonic plasma spraying.The morphology and microstructure of the coating were observed and analyzed.The hardness,elastic modulus,and bonding strength of the coating were measured.The wear resistance of the coating and 2A12 aluminum alloy was studied by friction and wear test.The results indicated that the coating was compact and the porosity was only 1.5%.The phase of the coating was mainly composed ofα-Al andβ-Si as well as some hard particles(Al9Si,Al3.21Si0.47,and CuAl2).The average microhardness of the coating was HV 242,which was greater than that of 2A12 aluminum alloy(HV 110).The wear resistance of the coating was superior to 2A12 aluminum alloy.The wear mechanism of the 2A12 aluminum alloy was primarily adhesive wear,while that of the coating was primarily abrasive wear.Therefore,it is possible to prepare a high content silicon aluminum alloy coating with good wear resistance on an aluminum alloy by supersonic plasma spraying.展开更多
基金Project(2007AA03Z557) supported by the National High-tech Research and Development Program of ChinaProject(50775086) supported by the National Natural Science Foundation of China
文摘The morphology changes of both Fe-containing intermetallic compounds and the primary Si phase of Al-20Si-2Fe- 2Cu-0.4Mg-1.0Ni-0.5Mn (mass fraction, %) alloy produced by semi-solid rheo-diecasting were studied. The semi-solid slurry of high silicon aluminum alloy was prepared by direct ultrasonic vibration (DUV) which was imposed on the alloy near the liquidus temperature for about 2 rain. Then, standard test samples of 6.4 mm in diameter were formed by semi-solid rheo-diecasting. The results show that the DUV treatment suppresses the formation of needle-like ,β-Al5(Fe,Mn)Si phase, and the Fe-containing intermetallic compounds exist in the form of fine Al4(Fe, Mn)Si2 particles. Additionally, the primary Si grows up as fine and round particles with uniform distribution in α(Al) matrix of this alloy under DUV treatment. The tensile strengths of the samples at the room temperature and 573 K are 230 MPa and 145 MPa, respectively. The coefficient of thermal expansion (CTE) between 25 ℃ and 300 ℃ is 16.052 8×10^-6 ℃^-1, and the wear rate is 1.55%. The hardness of this alloy with 2% Fe reaches HB146.3. It is discovered that modified morphology and uniform distribution of the Fe-containing intermetallic compounds and the primary Si phase are the main reasons for reducing the CTE and increasing the wear resistance of this alloy.
文摘The P + Sr + Ce compound modification technologies of as-cast Al-21Si-1.5Cu-1.5Ni- 2.5Fe- 0.5Mg alloy were investigated by means of orthogonal test. Orthogonal test results show that 3% (CaH2PO4 + 2CASO4)+ 0.2%Sr + 0.2%Ce is the optimum additive of modification treatment which can fine eutectic and primary silicon also can change the form of rich-iron phase at same time. The needle form of rich-iron phase is Al9FeSi3, which is prored by X-ray diffraction analysis and X-ray energy spectrum analysis. After compound modification treatment, the needle form of rich-iron phase disappeared and the fish bone form of rich-iron and rich-Ce phase that is AlsCeFe emerged. Both at room temperature and at 300℃, the tensile strength of the alloy after the modification treatment with the optimum additive is 30% lager than that of the alloy unmodified. Observed by SEM, the brittle intercrystalline tensile fracture changed into a blended one in which has many dimples.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51675158,51535011,and 51675531)the Natural Science Foundation of Hebei Province(No.E2016202325)the Beijing Municipal Natural Science Foundation(No.3172038).
文摘A high content silicon aluminum alloy(Al-25Si-4Cu-1Mg)coating was prepared on a 2A12 aluminum alloy by supersonic plasma spraying.The morphology and microstructure of the coating were observed and analyzed.The hardness,elastic modulus,and bonding strength of the coating were measured.The wear resistance of the coating and 2A12 aluminum alloy was studied by friction and wear test.The results indicated that the coating was compact and the porosity was only 1.5%.The phase of the coating was mainly composed ofα-Al andβ-Si as well as some hard particles(Al9Si,Al3.21Si0.47,and CuAl2).The average microhardness of the coating was HV 242,which was greater than that of 2A12 aluminum alloy(HV 110).The wear resistance of the coating was superior to 2A12 aluminum alloy.The wear mechanism of the 2A12 aluminum alloy was primarily adhesive wear,while that of the coating was primarily abrasive wear.Therefore,it is possible to prepare a high content silicon aluminum alloy coating with good wear resistance on an aluminum alloy by supersonic plasma spraying.