Based on the experiments on a platform with real vehicle structure and finite element simulation, the vibration and interior acoustic radiation under random excitations of high-speed trains’ bogie area were studied. ...Based on the experiments on a platform with real vehicle structure and finite element simulation, the vibration and interior acoustic radiation under random excitations of high-speed trains’ bogie area were studied. Firstly, combined with line tests, a vehicle body with a length of 7 m was used as the research object. By comparing the results of experiment and simulation, the accuracy of the finite element model was verified. Secondly, the power spectral density curves at typical measuring points in bogie area were obtained by processing and calculating the line test data, which was measured when the vehicle ran at high speeds, and the standard vibration spectrum of the bogie area was obtained by the extreme envelope method. Furthermore, the random vibration test and simulation prediction analysis of the real vehicle structure were carried out to further verify the accuracy of the noise and vibration prediction model. Finally, according to the vibration and acoustic radiation theory, the indirect boundary element method was adopted to predict the acoustic response of the real vehicle. The analysis shows that the simulated power spectral density curves of acceleration and sound pressure level are highly consistent with the experimental ones, and the error between the simulated prediction and the experimental result is within the allowable range of 3 dB.展开更多
A An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous determination of 24 elements (Be, Mg, A1, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, ...A An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous determination of 24 elements (Be, Mg, A1, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Mo, Ag, Cd, Sn Sb, Ba, Pt, Au, and Pb) in high purity cobalt was described. Sample digestions were performed in closed microwave vessels using HNO3 and HCI. The matrix effects because of the presence of excess HCI and Co were evaluated. The usefulness of high mass resolution for overcoming some spectral interference was demonstrated. The optimum conditions for the determination were tested and discussed. The standard addition method was employed for quantitative analysis. The detection limits were 0.016-1.50 ].tg·g^-1, the recovery ratios were 92.2%-111.2%, and the RSD was less than 3.6%. The method was accurate, quick, and convenient. It was applied to the determination of trace impurities in high purity cobalt with satisfactory results.展开更多
基金support for this work from the Ministry of Science and Technology of China(2016YFB1200500)
文摘Based on the experiments on a platform with real vehicle structure and finite element simulation, the vibration and interior acoustic radiation under random excitations of high-speed trains’ bogie area were studied. Firstly, combined with line tests, a vehicle body with a length of 7 m was used as the research object. By comparing the results of experiment and simulation, the accuracy of the finite element model was verified. Secondly, the power spectral density curves at typical measuring points in bogie area were obtained by processing and calculating the line test data, which was measured when the vehicle ran at high speeds, and the standard vibration spectrum of the bogie area was obtained by the extreme envelope method. Furthermore, the random vibration test and simulation prediction analysis of the real vehicle structure were carried out to further verify the accuracy of the noise and vibration prediction model. Finally, according to the vibration and acoustic radiation theory, the indirect boundary element method was adopted to predict the acoustic response of the real vehicle. The analysis shows that the simulated power spectral density curves of acceleration and sound pressure level are highly consistent with the experimental ones, and the error between the simulated prediction and the experimental result is within the allowable range of 3 dB.
基金the Natural Science Foundation of Hunan Province, China (No. 05JJ40017).
文摘A An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous determination of 24 elements (Be, Mg, A1, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Mo, Ag, Cd, Sn Sb, Ba, Pt, Au, and Pb) in high purity cobalt was described. Sample digestions were performed in closed microwave vessels using HNO3 and HCI. The matrix effects because of the presence of excess HCI and Co were evaluated. The usefulness of high mass resolution for overcoming some spectral interference was demonstrated. The optimum conditions for the determination were tested and discussed. The standard addition method was employed for quantitative analysis. The detection limits were 0.016-1.50 ].tg·g^-1, the recovery ratios were 92.2%-111.2%, and the RSD was less than 3.6%. The method was accurate, quick, and convenient. It was applied to the determination of trace impurities in high purity cobalt with satisfactory results.