期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Prismatic and full-waveform joint inversion 被引量:4
1
作者 Qu Ying-Ming Li Zhen-Chun +1 位作者 Huang Jian-Ping Li Jin-Li 《Applied Geophysics》 SCIE CSCD 2016年第3期511-518,580,共9页
Prismatic wave is that it has three of which is located at the reflection interface reflection paths and two reflection points, one and the other is located at the steep dip angle reflection layer, so that contains a ... Prismatic wave is that it has three of which is located at the reflection interface reflection paths and two reflection points, one and the other is located at the steep dip angle reflection layer, so that contains a lot of the high and steep reflection interface information that primary cannot reach. Prismatic wave field information can be separated by applying Born approximation to traditional reverse time migration profile, and then the prismatic wave is used to update velocity to improve the inversion efficiency for the salt dame flanks and some other high and steep structure. Under the guidance of this idea, a prismatic waveform inversion method is proposed (abbreviated as PWI). PWI has a significant drawback that an iteration time of PWI is more than twice as that of FWI, meanwhile, the full wave field information cannot all be used, for this problem, we propose a joint inversion method to combine prismatic waveform inversion with full waveform inversion. In this method, FWI and PWI are applied alternately to invert the velocity. Model tests suggest that the joint inversion method is less dependence on the high and steep structure information in the initial model and improve high inversion efficiency and accuracy for the model with steep dip angle structure. 展开更多
关键词 prismatic waveform inversion full waveform inversion high and steep structure sag model Marmousi2 model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部