期刊文献+
共找到748篇文章
< 1 2 38 >
每页显示 20 50 100
Effect of Manganese on As-Cast Microstructure and Hardening Behavior of High Chromium White Cast Iron 被引量:1
1
作者 SUN Zhi-ping SHEN Bao-luo +2 位作者 WANG Jun LIU Hao-huai LUO Cheng 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2005年第1期34-37,共4页
The effect of manganese on the as-cast structure and hardening behavior of high chromium white cast iron subjected to sub-critical treatment was studied.The results indicate that the fraction of retained austenite and... The effect of manganese on the as-cast structure and hardening behavior of high chromium white cast iron subjected to sub-critical treatment was studied.The results indicate that the fraction of retained austenite and the manganese distribution in as-cast alloys are controlled by manganese content.The manganese distribution in as-cast alloys is not homogeneous.The manganese content in carbide is higher than that in matrix.Whether the secondary hardening occurs or not and the peak hardness of secondary hardening is controlled by manganese content in retained austenite in as-cast structure.Higher manganese content can cause more retained austenite.The secondary hardening occurs in sub-critical treating process if the fraction of retained austenite is high. 展开更多
关键词 white cast iron high chromium MICROSTRUCTURE hardening behavior manganese sub-critical treatment
下载PDF
Sulfuric acid leaching of high iron-bearing zinc calcine 被引量:2
2
作者 Jin-lin Yang Ji-guang Liu +1 位作者 Han-xin Xiao Shao-jian Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第11期1211-1216,共6页
Sulfuric acid leaching of high iron-bearing zinc calcine was investigated to assess the effects of sulfuric acid concentration, liquid-to-solid ratio, leaching time, leaching temperature, and the stirring speed on the... Sulfuric acid leaching of high iron-bearing zinc calcine was investigated to assess the effects of sulfuric acid concentration, liquid-to-solid ratio, leaching time, leaching temperature, and the stirring speed on the leaching rates of zinc and iron. The results showed that the sulfuric acid concentration, liquid-to-solid ratio, leaching time, and leaching temperature strongly influenced the leaching of zinc and iron, whereas stirring speed had little influence. Zinc was mainly leached and the leaching rate of iron was low when the sulfuric acid concentration was less than 100 g/L. At sulfuric acid concentrations higher than 100 g/L, the leaching rate of iron increased quickly with increasing sulfuric acid concentration. This behavior is attributed to iron-bearing minerals such as zinc ferrite in zinc calcine dissolving at high temperatures and high sulfuric acid concentrations but not at low temperatures and low sulfuric acid concentrations. 展开更多
关键词 high iron-bearing ZINC CALCINE sulfuric acid LEACHING ZINC ferrite LEACHING rate
下载PDF
Process Mineralogy of Iranian High Sulfur Iron Ore 被引量:2
3
作者 Tonglin Zhao Xiaoli Wang +1 位作者 Hongle Ai Ahmed Sobhy 《Journal of Minerals and Materials Characterization and Engineering》 2018年第4期498-506,共9页
Processing of Iranian high sulfur iron ore is problematic in minerals industry. The iron ores were studied by the means of polarizing microscopy, chemical analysis, X-ray diffraction. The study shows that the iron ore... Processing of Iranian high sulfur iron ore is problematic in minerals industry. The iron ores were studied by the means of polarizing microscopy, chemical analysis, X-ray diffraction. The study shows that the iron ores have high grade of iron, and complex structures. XRD showed that the iron ore consists of metallic minerals such as magnetite with a small amount of hematite and limonite and non-metallic minerals as serpentine, chlorite, and talc. The average particle size of magnetite crystals is 0.182 mm. The ore contains 1.62% sulfur as harmful impurity in form of pyrite mineral. Due to the isomorphism of magnesium and iron, magnetite mono crystal grade is lower than 68%, and difficult to be physically upgraded to a higher-grade iron concentrate using the available mineral processing technologies. 展开更多
关键词 high-sulfur iron ORE Process MINERALOGY MAGNETITE PYRITE
下载PDF
Effect of Carbon and Sulfur on Iron Melting at High Pressure:Implications for Composition and Evolution of the Planetary Terrestrial Cores
4
作者 L.W.Deng~1,Y.W.Fei~2,X.Liu~1,Z.Z.Gong~3 1.School of Earth and Space Science,Peking University,Beijing 100871,China. 2.Geophysical Laboratory,Carnegie Institution of Washington,5251 Broad Branch Road,NW,DC 20015,USA 3.Institute of Spacecraft Environment Engineering,Beijing 100094,China 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期204-204,共1页
The presence of light element(s)in the Earth’s core is necessary in order to explain the observed density and velocity discrepancy for the core(Anderson and Ahrens,1994).O,Si,S,C and H were suggested as potential can... The presence of light element(s)in the Earth’s core is necessary in order to explain the observed density and velocity discrepancy for the core(Anderson and Ahrens,1994).O,Si,S,C and H were suggested as potential candidates based on cosmochemical considerations(Stevenson,1981).High-pressure experiment results,in conjunction with theoretical and cosmochemical evidences,argued that it is difficult for any one of them to account for the core 展开更多
关键词 sulfur-carbon-iron high pressure MELTING PLANETARY core
下载PDF
The Application of Biological Removal Technology Used on the Treatment of Groundwater with Low-Iron and High-Manganese
5
作者 Hong Yang~(1,3),Chen Lü~2,Zhongyue Lu~3,Weixing Zhu~3,Min Gao~4,Chuang Chen~4 1.Harbin Institute of Technology,Harbin 150090,China 2.China Northeast Municipal Engineering Design and Research Institute,Changchun 130021,China 3.China University of Geosciences(Beijing),Beijing 100083,China 4.Department of Building and Management of Hunnan New Developed Area,Shenyang 110179,China 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期39-39,共1页
The characteristic of groundwater belongs to low iron but high manganese in Shenyang Hunnan New Developed Area.The first stage engineering of The WTP of Shenyang Hunnan industry Area were designed according the techno... The characteristic of groundwater belongs to low iron but high manganese in Shenyang Hunnan New Developed Area.The first stage engineering of The WTP of Shenyang Hunnan industry Area were designed according the technology of aerated-contact oxidation,and the water quality couldn’t reach to the standard after the WTP putted into production,1996. 展开更多
关键词 GROUNDWATER with low-iron and high manganese BIOLOGICAL REMOVAL aerated-contact OXIDATION
下载PDF
Sulfur phase and sulfur removal in high sulfur-containing bauxite 被引量:15
6
作者 胡小莲 陈文汨 谢巧玲 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1641-1647,共7页
The sulfur phase in high sulfur-containing bauxite was studied by an X-ray diffraction analysis and a chemistry quantitative analysis.The methods for the removal of different shaped sulfur were also discussed.The resu... The sulfur phase in high sulfur-containing bauxite was studied by an X-ray diffraction analysis and a chemistry quantitative analysis.The methods for the removal of different shaped sulfur were also discussed.The results show that sulfur phases in high sulfur-containing bauxites exist in the main form of sulfide sulfur (pyrite) or sulfate sulfur,and the main sulfur forms of bauxites from different regions are not the same.Through a combination of an X-ray diffraction analysis and a chemistry quantitative analysis,the sulfur phases of high sulfur-containing bauxite could be accurately investigated.Deciding the main sulfur form of high sulfur-containing bauxite could provide theoretical instruction for choosing methods for the removal of sulfur from bauxite,and an oxidizing-roasting process is an effective way to remove sulfide sulfur from high sulfur-containing bauxite,the content of S^2-in crude ore in the digestion liquor is above 1.7 g/L,but in the roasted ore digestion liquor,it is below 0.18 g/L.Using the sodium carbonate solution washing technology to wash bauxite can effectively remove sulfate sulfur,the content of the total sulfur in ore is lowered to below 0.2% and can meet the production requirements for the sulfur content. 展开更多
关键词 high sulfur-containing bauxite sulfur phase oxidizing-roasting sodium carbonate solution washing technology
下载PDF
A Fe-N-C catalyst with highly dispersed iron in carbon for oxygen reduction reaction and its application in direct methanol fuel cells
7
作者 谷领峥 姜鲁华 +3 位作者 李旭宁 金具涛 王军虎 孙公权 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第4期539-548,共10页
Exploring non‐precious metal catalysts for the oxygen reduction reaction (ORR) is essential for fuel cells and metal–air batteries. Herein, we report a Fe‐N‐C catalyst possessing a high specific surface area (1... Exploring non‐precious metal catalysts for the oxygen reduction reaction (ORR) is essential for fuel cells and metal–air batteries. Herein, we report a Fe‐N‐C catalyst possessing a high specific surface area (1501 m2/g) and uniformly dispersed iron within a carbon matrix prepared via a two‐step pyrolysis process. The Fe‐N‐C catalyst exhibits excellent ORR activity in 0.1 mol/L NaOH electrolyte (onset potential, Eo=1.08 V and half wave potential, E1/2=0.88 V vs. reversible hydrogen electrode) and 0.1 mol/L HClO4 electrolyte (Eo=0.85 V and E1/2=0.75 V vs. reversible hydrogen electrode). The direct methanol fuel cells employing Fe‐N‐C as the cathodic catalyst displayed promising per‐formance with a maximum power density of 33 mW/cm2 in alkaline media and 47 mW/cm2 in acidic media. The detailed investigation on the composition–structure–performance relationship by X‐ray diffraction, X‐ray photoelectron spectroscopy and Mo-ssbauer spectroscopy suggests that Fe‐N4, together with graphitic‐N and pyridinic‐N are the active ORR components. The promising direct methanol fuel cell performance displayed by the Fe‐N‐C catalyst is related to the intrinsic high catalytic activity, and critically for this application, to the high methanol tolerance. 展开更多
关键词 highly dispersed iron Microporous carbon Oxygen reduction reaction Direct methanol fuel cell
下载PDF
Regulation of carbon distribution to construct high-sulfur-content cathode in lithium-sulfur batteries 被引量:8
8
作者 Meng Zhao Yan-Qi Peng +2 位作者 Bo-Quan Li Xue-Qiang Zhang Jia-Qi Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期203-208,共6页
Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg^(-1).To address the insulation nature of sulfu... Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg^(-1).To address the insulation nature of sulfur,nanocarbon composition is essential to afford acceptable cycling capacity but inevitably sacrifices the actual energy density under working conditions.Therefore,rational structural design of the carbon/sulfur composite cathode is of great significance to realize satisfactory electrochemical performances with limited carbon content.Herein,the cathode carbon distribution is rationally regulated to construct high-sulfur-content and high-performance Li-S batteries.Concretely,a double-layer carbon(DLC)cathode is prepared by fabricating a surface carbon layer on the carbon/sulfur composite.The surface carbon layer not only provides more electrochemically active surfaces,but also blocks the polysulfide shuttle.Consequently,the DLC configuration with an increased sulfur content by nearly 10 wt%renders an initial areal capacity of 3.40 mAh cm^(-2) and capacity retention of 83.8%during 50 cycles,which is about two times than that of the low-sulfur-content cathode.The strategy of carbon distribution regulation affords an effective pathway to construct advanced high-sulfur-content cathodes for practical high-energy-density Li-S batteries. 展开更多
关键词 Lithium-sulfur batteries high sulfur content high areal loading Double-layer carbon high energy density
下载PDF
Grafting polymeric sulfur onto carbon nanotubes as highly-active cathode for lithium–sulfur batteries 被引量:4
9
作者 Junfeng Wu Siyu Ding +1 位作者 Shihai Ye Chao Lai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第3期27-33,共7页
Lithium–sulfur(Li–S)batteries are being explored as promising advanced energy storage systems due to their ultra-high energy density.However,fast capacity fading and low coulombic efficiency,resulting from the disso... Lithium–sulfur(Li–S)batteries are being explored as promising advanced energy storage systems due to their ultra-high energy density.However,fast capacity fading and low coulombic efficiency,resulting from the dissolution of polysulfides,remain a serious challenge.Compared to weak physical adsorptions or barriers,chemical confinement based on strong chemical interaction is a more effective approach to address the shuttle issue.Herein,we devise a novel polymeric sulfur/carbon nanotube composite for Li–S battery,for which 2,5-dithiobiurea is chosen as the stabilizer of long-chain sulfur.This offers chemical bonds which bridge the polymeric sulfur and carbon nanotubes.The obtained composite can deliver an ultra-high reversible capacity of 1076.2 m Ahg^-1(based on the entire composite)at the rate of 0.1 C with an exceptional initial Coulombic efficiency of 96.2%,as well as remarkable cycle performance.This performance is mainly attributed to the reaction reversibility of the obtained polymeric sulfur-based composite during the discharge/charge process.This was confirmed by density functional theory calculations for the first time. 展开更多
关键词 Lithium–sulfur BATTERIES POLYMERIC sulfur Carbon NANOTUBES DFT calculations high capacity
下载PDF
Niobium alloying effect in high carbon equivalent grey cast iron 被引量:7
10
作者 Zhou Wenbin Zhu Hongbo +3 位作者 Zheng Dengke Zheng Hongxing Hua Qin Zhai Qijie 《China Foundry》 SCIE CAS 2011年第1期36-40,共5页
The effect of niobium on the formation of NbC phase and solidification structure in high carbon equivalent grey cast iron was investigated.The experimental results indicated that an increase in the niobium content is ... The effect of niobium on the formation of NbC phase and solidification structure in high carbon equivalent grey cast iron was investigated.The experimental results indicated that an increase in the niobium content is favorable to refining the graphite and eutectic cell;and the pearlite lamellar spacing is reduced.Based on the thermodynamic calculation the formation of NbC is prior to the eutectic reaction.The reduction in the pearlite lamellar spacing is mainly attributed to the decrease of eutectic temperature with the addition of niobium.Additionally,properties including hardness and wear resistance were improved after the addition of niobium. 展开更多
关键词 niobium alloying grey cast iron high carbon equivalent REFINEMENT
下载PDF
Effects of Spin Transition and Cation Substitution on the Optical Properties and Iron Partitioning in Carbonate Minerals
11
作者 HU Jun XU Liangxu +1 位作者 LIU Jin YUE Donghui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第1期350-357,共8页
The high-pressure behavior of deep carbonate dictates the state and dynamics of oxidized carbon in the Earth's mantle,playing a vital role in the global carbon cycle and potentially influencing long-term climate c... The high-pressure behavior of deep carbonate dictates the state and dynamics of oxidized carbon in the Earth's mantle,playing a vital role in the global carbon cycle and potentially influencing long-term climate change.Optical absorption and Raman spectroscopic measurements were carried out on two natural carbonate samples in diamond-anvil cells up to 60 GPa.Mg-substitution in high-spin siderite FeCO_(3)increases the crystal field absorption band position by approximately 1000 cm^(-1),but such an effect is marginal at>40 GPa when entering the low-spin state.The crystal field absorption band of dolomite cannot be recognized upon compression to 45.8 GPa at room temperature but,in contrast,the high-pressure polymorph of dolomite exhibits a strong absorption band at frequencies higher than(Mg,Fe)CO_(3)in the lowspin state by 2000–2500 cm^(-1).Additionally,these carbonate minerals show more complicated features for the absorption edge,decreasing with pressure and undergoing a dramatic change through the spin crossover.The optical and vibrational properties of carbonate minerals are highly correlated with iron content and spin transition,indicating that iron is preferentially partitioned into low-spin carbonates.These results shed new light on how carbonate minerals evolve in the mantle,which is crucial to decode the deep carbon cycle. 展开更多
关键词 carbonate petrology/mineralogy MANTLE high pressure diamond-anvil cell iron spin transition iron partitioning deep carbon cycle
下载PDF
WELDING BETWEEN HIGH MANGANESE STEEL AND HIGH CARBON STEEL 被引量:2
12
作者 M. H. Guo,D. C. Shao, Z. G Dong and J. C Yang National Key Laboratory Advanced Welding Production Technology, Harbin institute of Technology, Harbin 150001, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第1期112-116,共5页
Manuscript received 30 July 1999 Abstract The shielded metal arc welding (SMAW) of a manganese steel part as a crossing of railway track to a carbon steel part as the rails of the railroad is the welding of dissimil... Manuscript received 30 July 1999 Abstract The shielded metal arc welding (SMAW) of a manganese steel part as a crossing of railway track to a carbon steel part as the rails of the railroad is the welding of dissimilar steel. It are was known that it is not possible to the the rail of railroad directly to the cross- ing of railway track made from a steel containing about 14% of manganese (wt. ) because of so many differences between the two kinds of steels such as composition, microstructure,mechanical properties and weldability.A method was used to solve the problem by presetting an intermediate layer on each side of the joint and other special procedures were used.The result of test indicated that a good weld joint was obtained. 展开更多
关键词 high manganese steel high carbon steel welding rail intermedinate layer
下载PDF
Geochemical Characterization and Origin of High-Sulfur,Heavy Oils in Jiyang Sub-Basin,East China 被引量:4
13
作者 WANG Guangli WANG Tieguan ZHANG Linye 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第4期923-931,共9页
High-sulfur,heavy petroleum is widely occurring in the Tertiary lacustrine Jiyang sub-basin, Bohai Bay Basin.They are differentiated into two families based on the bulk properties and biomarker compositions.Family 1 i... High-sulfur,heavy petroleum is widely occurring in the Tertiary lacustrine Jiyang sub-basin, Bohai Bay Basin.They are differentiated into two families based on the bulk properties and biomarker compositions.Family 1 is characterized by high resins(40%-71%)and sulfur(2%-4%),and low wax (l%-6%),with n-alkanes removed by biodegradation,whereas family 2 is characterized by extremely abundant sulfur(3%-10%),and high asphaltenes(7%-31%)and wax(2%-19%),with no evidence of microbial attack.The oils of family 1 are distributed in the reservoir,lower than 1500 m throughout the sub-basin.Biomarker assemblages,such as low pristane/phytane ratios(1 Pr/Ph)and a high abundance of carotane,gammacerane,and dinosterane,suggest that they are derived from the calcareous mudstones and shales among the stratified,saline Es_4~u unit,in addition to the in situ biodegradation-concentrated sulfur content.However,the oils of family 2 are identified only in the western Zhanhua and eastern Chezhen depressions,with a depth deeper than 1700 m.Physical properties,together with biomarker ratios,including even-numbered n-alkanes,1 Pr/Ph,trace diasteranes,higher C35 homohopanes,and abundant dibenzothiophene series,with1 dibenzothiophene/phenanthrene,indicate an origin from carbonate source rocks.The X-ray diffraction analysis showed that the carbonate source rock is limited in the Es_4~u unit of the Bonan sag,which is different from most other source rocks in the same horizon.It is suggested that the high-sulfur,heavy oils are generated at the early stage of the oil window.Bacterial sulfate reduction might be responsible for the occurrence of sulfur species in the high-sulfur,heavy oils,while heavy biodegradation will enhance sulfur concentrations. 展开更多
关键词 high-sulfur heavy oil bacterial sulfate reduction BIODEGRADATION LACUSTRINE carbonate
下载PDF
Effect of RE-Modifier on Microstructure and Mechanical Property of High-Carbon Medium-Manganese Steel 被引量:1
14
作者 SONG Yan-pei XIE Jing-pei +1 位作者 ZHU Yao-min WANG Ai-qin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2002年第1期36-39,共4页
The effect of RE-modifier on the microstructure and mechanical properties of high carbon-medium manganese steel has been investigated in present work.The results showed that the RE-modifier can refine the crystalline ... The effect of RE-modifier on the microstructure and mechanical properties of high carbon-medium manganese steel has been investigated in present work.The results showed that the RE-modifier can refine the crystalline grain of high-carbon medium-manganese steel.The shape and distribution of carbides are improved and the columnar grains and phosphide in grain boundary are eliminated.Consequently,the impact toughness of the steel is increased by more than one time,compared with no addition of RE-modifier. 展开更多
关键词 RE-modifier high-carbon medium-manganese steel microstructure and property
下载PDF
Superfast and solvent-free core-shell assembly of sulfur/carbon active particles by hail-inspired nanostorm technology for high-energy-density Li-S batteries
15
作者 Lanxiang Feng Zhiwei Zhu +6 位作者 Yan He Yuan Ji Xuewe He Lei Jing Mingbo Yang Wei Yang Yu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期565-573,共9页
The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batterie... The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to its high-energy-density and abundance.However,there is a lack of industry-friendly and low-carbon fabrication strategies for high-performance sulfur-based active particles,which,however,is in critical need by their practical success.Herein,based on a hail-inspired sulfur nano-storm(HSN)technology developed in our lab,we report an energy-saving,solvent-free strategy for producing core-shell sulfur/carbon electrode particles(CNT@AC-S)in minutes.The fabrication of the CNT@AC-S electrode particles only involves low-cost sulfur blocks,commercial carbon nanotubes(CNT)and activated carbon(AC)micro-particles with high specific surface area.Based on the above core-shell CNT@AC-S particles,sulfur cathode with a high sulfur-loading of 9.2 mg cm^(-2) delivers a stable area capacity of 6.6 mAh cm^(-2) over 100 cycles.Furthermore,even for sulfur cathode with a super-high sulfur content(72 wt%over the whole electrode),it still delivers a high area capacity of 9 mAh cm^(-2) over50 cycles in a quasi-lean electrolyte condition.In a nutshell,this study brings a green and industryfriendly fabrication strategy for cost-effective production of rationally designed S-rich electrode particles. 展开更多
关键词 Core-shell assembly sulfur/carbon secondary active particles high energy density lithium sulfur batteries Thick sulfur electrode Hail-inspired sulfur nanostorm technology
下载PDF
Effect of Rolling Process on Microstructure and Wear Properties of High Carbon Equivalent Gray Cast Iron
16
作者 ZHAO Yihong CHEN Qianyu +4 位作者 ZHENG Zhiwei CAO Pei GONG Ziyu GENG Haoran CHEN Rongfa 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第6期903-910,共8页
Rolling process based on the plastic deformation as a surface strengthening treatment was employed,aiming to improve the wear resistance ability and functional performance of the high carbon equivalent gray cast iron(... Rolling process based on the plastic deformation as a surface strengthening treatment was employed,aiming to improve the wear resistance ability and functional performance of the high carbon equivalent gray cast iron(HCEGCI).The microstructures and tribological performance of the untreated and rolled samples were characterized.In addition,the wear mechanism of HCEGCI samples was also studied via pin-on-disc tests.The experimental results show that the as-rolled samples possess the structure-refined layer of 15μm and work-hardened layer of 0.13 mm.In comparison with the surface hardness of untreated samples,the surface hardness of as-rolled samples increases by 84.6%(from 240HV0.1 to 443HV0.1)and the residual compressive stresses existed within the range of 0.2 mm.The wear rates of as-rolled samples were decreased by 38.4%,37.5%,and 44.4%under different loads of 5 N,10 N,and 15 N,respectively.The wear characteristics of the untreated samples mainly exhibit the peeling wear coupled with partial adhesive and abrasive wear.However,as for the as-rolled samples,the adhesive wear was limited by the structure-refined layer and the micro-crack propagation was controlled by the work-hardened layer.Therefore,the wear resistance of as-rolled samples can be improved significantly due to the low wearing degree of the friction contact zone. 展开更多
关键词 high carbon equivalent alloy gray cast iron rolling process MICROSTRUCTURE wear resistance
下载PDF
Characterization of Egyptian Manganese Ores for Production of High Carbon Ferromanganese
17
作者 Mohammed Salah Fahim Hoda El Faramawy +2 位作者 Azza Mohammed Ahmed Saaed Nabil Ghali Abd El Hakim Taha Kandil 《Journal of Minerals and Materials Characterization and Engineering》 2013年第2期68-74,共7页
This work aims at studying the reactivity of Egyptian manganese ores to be used in the production of ferromanganese alloys in submerged electric arc furnace. Ores with different manganese content (high-medium and low)... This work aims at studying the reactivity of Egyptian manganese ores to be used in the production of ferromanganese alloys in submerged electric arc furnace. Ores with different manganese content (high-medium and low) were selected and characterized by X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM). The main mineralogical compositions in the three ores are pyrolusite (MnO2) and hematite (Fe2O3). Porosity of selected Mn ores was determined. The reactivity of the different ores was carried out through pre-reduction of the selected ores using thermobalance at 900°C and 1100°C and mixture of CO and CO2 gases. The reduction process was done until steady weight. The reduced ores were examined using XRD and SEM. The results showed that pyrolusite in high and medium ores are converted completely to MnO at 1100°C. However, the ore with low manganese content was converted to MnO and Mn3O4. Consequently, it is clear from the results that Mn ores with high and medium MnO2 content are more reactive than those with low MnO2. Therefore, high MnO2 content Mn ores are preferable to get good economic impact during the production of high carbon ferromanganese. 展开更多
关键词 high Carbon FERROmanganese manganese ORES ORE REACTIVITY CO Reduction Porosity
下载PDF
Layer Structure Analysis of Low-Carbon Steel Containing Rare Earth by High-Temperature Carburizing of Liquid Cast-Iron
18
作者 谌岩 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第S1期130-133,共4页
The layer structure of low-carbon steel containing RE by high-temperature (T>1200 ℃) carburizing of liquid cast-iron was studied and the diffusion activation energy of carbon was calculated by metallographic micr... The layer structure of low-carbon steel containing RE by high-temperature (T>1200 ℃) carburizing of liquid cast-iron was studied and the diffusion activation energy of carbon was calculated by metallographic microscpe, chemical analysis etc. The result shows that the technology of carburizing in liquid cast-iron can expedite caburization distinctly and changes the carburizing layer structure. The carburizing rate is 60~80 times of that of the traditional technology, and there is about 43% decrease in the activation energy compared with gas-carburization. In outer structure layer, cementite is formed simultaneously both on the crystal boundary reticularly and inside the crystal grains stripedly. In inner carburizing layer, there is undissolved blocky ferrite in reticular cementite. Besides, rare earth element can expedite carburization process. 展开更多
关键词 low-carbon steel high-temperature carburizing of liquid cast-iron layer structure rare earths
下载PDF
Highly active Fe_(7)S_(8) encapsulated in N-doped hollow carbon nanofibers for high-rate sodium-ion batteries 被引量:1
19
作者 Chengzhi Zhang Donghai Wei +5 位作者 Fei Wang Guanhua Zhang Junfei Duan Fei Han Huigao Duan Jinshui Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期26-35,I0002,共11页
Nanostructured iron sulfides are regarded as a potential anode material for sodium-ion batteries in virtue of the rich natural abundance and remarkable theoretical capacity.However,poor rate performance and inferior c... Nanostructured iron sulfides are regarded as a potential anode material for sodium-ion batteries in virtue of the rich natural abundance and remarkable theoretical capacity.However,poor rate performance and inferior cycling stability caused by sluggish kinetics and volume swelling represent two main obstacles at present. The previous research mainly focuses on nanostructure design and/or hybridizing with conductive materials.Further boosting the property by adjusting Fe/S atomic ratio in iron sulfides is rarely reported.In this work,Fe_7 S_8 and FeS_2 encapsulated in N-doped hollow carbon fibers(NHCFs/Fe_7 S_8 and NHCFs/FeS_2) are constructed by a combined chemical bath deposition and subsequent sulfidation treatment.The well-designed NHCFs/Fe_(7) S_(8) electrode displays a remarkable capacity of 517 mAh g^(-1) at 2 A g^(-1)after 1000 cycles and a superb rate capability with a capability of 444 mAh g^(-1) even at 20 A g^(-1) in etherbased electrolyte.Additionally,the rate capability of NHCFs/Fe_(7) S_(8) is superior to that of the contrast NHCFs/FeS_(2) electrode and also much better than the values of the most previously reported iron sulfide-based anodes.The in-depth mechanism explanation is explained by further experimental analysis and theoretical calculation,revealing Fe_(7) S_(8) displays improved intrinsic electronic conductivity and faster Na^(+) diffusion coefficient as well as higher reaction reversibility. 展开更多
关键词 Sodium-ion batteries Anode high rate iron sulfides N-doped hollow carbon fibers
下载PDF
RESEARCH ON CHEMICAL COMPOSITION AND MICROSTRUCTURE OF NEWLY-DEVELOPED HIGH STRENGTH AND HIGH ELONGATION STEELS
20
作者 Y.Chen X.Chen +6 位作者 A.M.Guo D.X.Luo B.F.Xu Z.X.Yuan P.H.Li S.K.Pu S.B.Zhou 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2003年第2期122-131,共10页
The different chemical composition of silicon and manganese as well as different retained austenite fraction ranged from 4% to 10% of the high strength and high elongation steels were studied in the paper. The disloca... The different chemical composition of silicon and manganese as well as different retained austenite fraction ranged from 4% to 10% of the high strength and high elongation steels were studied in the paper. The dislocations and carbon concentration in retained austenite were observed by a transmission electron microscope and an electric probe analyzer, respectively. The experimental results showed that silicon and manganese are two fundamental alloying elements to stabilize austenite effectively but retaining austenite in different mechanisms. Meanwhile, the cooling processing played an important role in controlling the fraction of retained austenite of the hot-rolled high strength and high plasticity steels. 展开更多
关键词 high strength high plasticity carbon silicon manganese hot- rolling retained austenite Ms point
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部