Based on the daily maximum temperature data covering the period 1961-2005, temporal and spatial characteristics and their changing in mean annual and monthly high temperature days(HTDs)and the mean daily maximum tem...Based on the daily maximum temperature data covering the period 1961-2005, temporal and spatial characteristics and their changing in mean annual and monthly high temperature days(HTDs)and the mean daily maximum temperature(MDMT)during annual and monthly HTDs in East China were studied.The results show that the mean annual HTDs were 15.1 and the MDMT during annual HTDs was 36.3℃in the past 45 years.Both the mean annual HTDs and the MDMT during annual HTDs were negative anomaly in the1980s and positive anomaly in the other periods of time,oscillating with a cycle of about 12-15 years.The mean annual HTDs were more in the southern part,but less in the northern part of East China.The MDMT during annual HTDs was higher in Zhejiang,Anhui and Jiangxi provinces in the central and western parts of East China.The high temperature process(HTP) was more in the southwestern part,but less in northeastern part of East China.Both the HTDs and the numbers of HTP were at most in July,and the MDMT during monthly HTDs was also the highest in July.In the first 5 years of the 21st century,the mean annual HTDs and the MDMT during annual HTDs increased at most of the stations,both the mean monthly HTDs and the MDMT during monthly HTDs were positive anomalies from April to October,the number of each type of HTP generally was at most and the MDMT in each type of HTP was also the highest.展开更多
Uniaxial compression tests on sandstone samples with five different sizes after high temperature processes were performed in order to investigate the size effect and its evolution. The test results show that the densi...Uniaxial compression tests on sandstone samples with five different sizes after high temperature processes were performed in order to investigate the size effect and its evolution. The test results show that the density, longitudinal wave velocity, peak strength, average modulus and secant modulus of sandstone decrease with the increase of temperature, however, peak strain increases gradually. With the increase of ratio of height to diameter, peak strength of sandstone decreases, which has an obvious size effect. A new theoretical model of size effect of sandstone material considering the influence of temperature is put forward, and with the increase of temperature, the size effect is more apparent. The threshold decreases gradually with the increase of temperature, and the deviations of the experimental values and the theoretical values are between 0.44% and 6.06%, which shows quite a credibility of the theoretical model.展开更多
Isothermal compression testing of Ti555211 titanium alloys was carried out at deformation temperatures from 750 to 950 °C in 50 °C intervals with a strain rate of0.001-1.000 s^(-1). The high-temperature de...Isothermal compression testing of Ti555211 titanium alloys was carried out at deformation temperatures from 750 to 950 °C in 50 °C intervals with a strain rate of0.001-1.000 s^(-1). The high-temperature deformation behavior of the Ti555211 alloy was characterized by analysis of stress-strain behavior, kinetics and processing maps. A constitutive equation was formulated to describe the flow stress as a function of deformation temperature and strain rate, and the calculated apparent activation energies are found to be 454.50 and 207.52 k J mol^(-1)in the a b-phase and b-phase regions, respectively. A processing map based on the Murty instability criterion was developed at a strain of 0.7. The maps exhibit two domains of peak efficiency from 750 to 950 °C. A *60 % peak efficiency occurs at 800-850 °C/0.001-0.010 s^(-1). The other peak efficiency of *60 % occurs at C950 °C/0.001-0.010 s^(-1), which can be considered to be the optimum condition for high-temperature working of this alloy.However, at strain rates of higher than 1.000 s^(-1)and deformation temperatures of 750 and 950 °C, clear process flow lines and bands of flow localization occur in the hightemperature deformation process, which should be avoided in Ti555211 alloy hot processing. The mechanism in stability domain and instability domain was also discussed.展开更多
Since pyrometallurgical approaches on lithium ion battery recycling are not yet capable of recovering lithium but only nickel,cobalt and manganese,the Chair of Thermal Processing Technology at the Montanuniversitaet L...Since pyrometallurgical approaches on lithium ion battery recycling are not yet capable of recovering lithium but only nickel,cobalt and manganese,the Chair of Thermal Processing Technology at the Montanuniversitaet Leoben started to investigate experimental reactor concepts on their suitability to overcome this major drawback.Therefor,the general behaviour of currently used cathode materials under reducing conditions and high temperatures is of great interest.This work expands previous performed heating microscope experiments by thermogravimetric analysis(TGA)to characterize the reactions that are responsible for certain changes in the cathode materials.By comparing the superficial changes of the samples in the heating microscope with the corresponding data from the TGA,it was possible to identify the temperature zones in which reduction reactions occured.For all investigated cathode materials,the reduction reactions started at technically feasible temperatures of approx.1000◦C,which is favorable for the desired recycling process.On the other hand,this is some hundred degrees higher than the temperature at which first changes in the heating microscope could be observed and indicates that there are changes in the material before the reduction starts.Therefore,the results also emphasize the need for further analysis to clarify this offset and to complete the thermal characterisation of the cathode materials.展开更多
The 10MW high temperature gas-cooled reactor test module (HTR-10) is currently under construction.One of its objectives is to develop high temperature process heat applications. To realize this target, various high te...The 10MW high temperature gas-cooled reactor test module (HTR-10) is currently under construction.One of its objectives is to develop high temperature process heat applications. To realize this target, various high temperature gas-cooled reactor (HTGR) process heat applications have been analyzed. This paper briefly describes the possibilities and experimental schemes for using the HTR-10 for process heat application studies.展开更多
基金Funded by R&D Special Fund for Public Welfare Industry(meteorology),No.GYHY(QX)2007-6-19Na-tional Scientific and Technical Supporting Programs,No.2006BAK13B05
文摘Based on the daily maximum temperature data covering the period 1961-2005, temporal and spatial characteristics and their changing in mean annual and monthly high temperature days(HTDs)and the mean daily maximum temperature(MDMT)during annual and monthly HTDs in East China were studied.The results show that the mean annual HTDs were 15.1 and the MDMT during annual HTDs was 36.3℃in the past 45 years.Both the mean annual HTDs and the MDMT during annual HTDs were negative anomaly in the1980s and positive anomaly in the other periods of time,oscillating with a cycle of about 12-15 years.The mean annual HTDs were more in the southern part,but less in the northern part of East China.The MDMT during annual HTDs was higher in Zhejiang,Anhui and Jiangxi provinces in the central and western parts of East China.The high temperature process(HTP) was more in the southwestern part,but less in northeastern part of East China.Both the HTDs and the numbers of HTP were at most in July,and the MDMT during monthly HTDs was also the highest in July.In the first 5 years of the 21st century,the mean annual HTDs and the MDMT during annual HTDs increased at most of the stations,both the mean monthly HTDs and the MDMT during monthly HTDs were positive anomalies from April to October,the number of each type of HTP generally was at most and the MDMT in each type of HTP was also the highest.
基金Project(2013CB036003)supported by the National Key Basic Research Program of ChinaProjects(51374198,51134001)supported by the National Natural Science Foundation of ChinaProject(CXZZ13_0935)supported by the Jiangsu Province Ordinary College Graduate Research Innovative Program,China
文摘Uniaxial compression tests on sandstone samples with five different sizes after high temperature processes were performed in order to investigate the size effect and its evolution. The test results show that the density, longitudinal wave velocity, peak strength, average modulus and secant modulus of sandstone decrease with the increase of temperature, however, peak strain increases gradually. With the increase of ratio of height to diameter, peak strength of sandstone decreases, which has an obvious size effect. A new theoretical model of size effect of sandstone material considering the influence of temperature is put forward, and with the increase of temperature, the size effect is more apparent. The threshold decreases gradually with the increase of temperature, and the deviations of the experimental values and the theoretical values are between 0.44% and 6.06%, which shows quite a credibility of the theoretical model.
基金financially supported by the Project of Introducing Talents of Discipline to Universities‘‘111’’Project(No.B08040)
文摘Isothermal compression testing of Ti555211 titanium alloys was carried out at deformation temperatures from 750 to 950 °C in 50 °C intervals with a strain rate of0.001-1.000 s^(-1). The high-temperature deformation behavior of the Ti555211 alloy was characterized by analysis of stress-strain behavior, kinetics and processing maps. A constitutive equation was formulated to describe the flow stress as a function of deformation temperature and strain rate, and the calculated apparent activation energies are found to be 454.50 and 207.52 k J mol^(-1)in the a b-phase and b-phase regions, respectively. A processing map based on the Murty instability criterion was developed at a strain of 0.7. The maps exhibit two domains of peak efficiency from 750 to 950 °C. A *60 % peak efficiency occurs at 800-850 °C/0.001-0.010 s^(-1). The other peak efficiency of *60 % occurs at C950 °C/0.001-0.010 s^(-1), which can be considered to be the optimum condition for high-temperature working of this alloy.However, at strain rates of higher than 1.000 s^(-1)and deformation temperatures of 750 and 950 °C, clear process flow lines and bands of flow localization occur in the hightemperature deformation process, which should be avoided in Ti555211 alloy hot processing. The mechanism in stability domain and instability domain was also discussed.
基金the funding support of the Zukunftsfonds Steiermark with funds from the province of Styria,Austria,Grant No.GZ:ABT08-189002/2020 PN:1305.
文摘Since pyrometallurgical approaches on lithium ion battery recycling are not yet capable of recovering lithium but only nickel,cobalt and manganese,the Chair of Thermal Processing Technology at the Montanuniversitaet Leoben started to investigate experimental reactor concepts on their suitability to overcome this major drawback.Therefor,the general behaviour of currently used cathode materials under reducing conditions and high temperatures is of great interest.This work expands previous performed heating microscope experiments by thermogravimetric analysis(TGA)to characterize the reactions that are responsible for certain changes in the cathode materials.By comparing the superficial changes of the samples in the heating microscope with the corresponding data from the TGA,it was possible to identify the temperature zones in which reduction reactions occured.For all investigated cathode materials,the reduction reactions started at technically feasible temperatures of approx.1000◦C,which is favorable for the desired recycling process.On the other hand,this is some hundred degrees higher than the temperature at which first changes in the heating microscope could be observed and indicates that there are changes in the material before the reduction starts.Therefore,the results also emphasize the need for further analysis to clarify this offset and to complete the thermal characterisation of the cathode materials.
文摘The 10MW high temperature gas-cooled reactor test module (HTR-10) is currently under construction.One of its objectives is to develop high temperature process heat applications. To realize this target, various high temperature gas-cooled reactor (HTGR) process heat applications have been analyzed. This paper briefly describes the possibilities and experimental schemes for using the HTR-10 for process heat application studies.