期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Research progress of high temperature resistant nylon 10T 被引量:2
1
作者 XIAO Wei HU Guo-sheng +1 位作者 ZHANG Jing-ting LIU Bing-xiao 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第1期92-97,共6页
Researches about synthesis and modification of nylon 10T(PA10T)in domestic universities and scientific research institutions are reviewed in this paper.The results show that,due to the different performance requiremen... Researches about synthesis and modification of nylon 10T(PA10T)in domestic universities and scientific research institutions are reviewed in this paper.The results show that,due to the different performance requirements,PA10T is studied from the co-polymerization,blending modification and filling modification of these three aspects.Meanwhile,the existing problems are analyzed and the development prospect of PA10T is predicted. 展开更多
关键词 PA10T high temperature resistant nylon material modification
下载PDF
Screening of High Temperature Resistant Fodder Yeast Strains 被引量:1
2
作者 Yufeng LIU Yueming WANG +3 位作者 Qingli YANG Yanru JI Yan DONG Jie SHI 《Agricultural Biotechnology》 CAS 2015年第4期58-60,69,共4页
[ Objective] This study aimed to screen yeast strains suitable for high temperature processing of formulated biological feed. [ Method ] High temperature resistance and culture conditions of six yeast strains were inv... [ Objective] This study aimed to screen yeast strains suitable for high temperature processing of formulated biological feed. [ Method ] High temperature resistance and culture conditions of six yeast strains were investigated. [Result] Two yeast strains resistant to high temperature (45 ℃ ) with high viable cell number (10^8 cells/ml) were screened, including DQFC2117-1 and DQFC2122-2. [ Conclusion] Strains DQFC2117-1 and DQFC2122-2 could be used as high temperature resistant yeast strains for processing of formulated biological feed. 展开更多
关键词 high temperature resistance Fodder yeast Formulated feed Biological feed
下载PDF
Development of a High-Temperature Thixotropic Cement Slurry System
3
作者 Ping Lv Jiufei Liu +5 位作者 Mengran Xu Hui Tian Huajie Liu Yuhuan Bu Zhuang Cai Junfeng Qu 《Fluid Dynamics & Materials Processing》 EI 2023年第11期2907-2921,共15页
Cementing carbonate reservoirs is generally a difficult task.The so-called thixotropic cement slurry has gained considerable attention in this regard as it can help tofix some notable problems.More precisely,it can ea... Cementing carbonate reservoirs is generally a difficult task.The so-called thixotropic cement slurry has gained considerable attention in this regard as it can help tofix some notable problems.More precisely,it can easilyfill the leakage layer;moreover,its gelling strength can grow rapidly when pumping stops,thereby increasing the resistance to gas channeling,effectively preventing this undesired phenomenon in many cases.High-temperature thixotropic cement slurry systems,however,are still in an early stage of development and additional research is needed to make them a viable option.In the present study,using a self-developed composite high-temperature thixotropic additive as a basis,it is shown that the compressive strength can be adjusted by tuning the proportion of silica sand,the high-temperature retarder,fluid loss additive and dispersant(compatible with the thixotropic additive).According to the tests,the developed high-temperature thixotropic cement slurry system has a 14 d compressive strength of 29.73 MPa at 150°C,and a thickening time of 330 min when the dosage of retarder is 2%.At the same time,the rheological property,water loss,permeability,water separation rate,and settlement stability of the cement slurry system meet the requirements of cementing construction. 展开更多
关键词 high temperature resistance THIXOTROPY cement slurry system
下载PDF
Plugging property and displacement characters of a novel high-temperature resistant polymer nanoparticle 被引量:1
4
作者 Zhi-Yong Wang Mei-Qin Lin +3 位作者 Huai-Ke Li Zhao-Xia Dong Juan Zhang Zi-Hao Yang 《Petroleum Science》 SCIE CAS CSCD 2022年第1期387-396,共10页
The goal of the research was to investigate the profile control and oil displacement characteristics of the polymer nanoparticles after high temperature swelling.The displacement parameters showed considerable influen... The goal of the research was to investigate the profile control and oil displacement characteristics of the polymer nanoparticles after high temperature swelling.The displacement parameters showed considerable influence on the plugging effect of the high-temperature swelled polymer nanoparticles,such as the core permeability,concentration of nanoparticles in the suspension,swelling time and swelling temperature,which makes it flexible to control the plugging effect by controlling displacement experiments conditions.Experimental results show that polymer nanoparticles dispersion system with a concentration of 500 mg/L is suitable for cores plugging with a permeability of 30×10^(-3)-150×10^(-3)μm^(2),even after aging at 150℃ for three months.The shunt flow experiments show that when the displacement factors are optimal values,the polymer nanoparticles after high temperature swelling to plug the high-permeability layer selectivity and almost do not clog the low-permeability layer.Oil recovery of homogeneous artificial core displacement experiment and a heterogeneous double-tube cores model are increased by 20%and 10.4%on the basis of water flooding.The polymer nanoparticles can be a great help for petroleum engineers to better apply this deep profile control and flooding technology. 展开更多
关键词 Polymer nanoparticles high temperature resistance Plugging property EOR
下载PDF
Laboratory Study on 210°C High Temperature and Salt Resistant Drilling Fluid
5
作者 Xintong Li Qichao Cao +2 位作者 Li He Shunyuan Zhang Song Wang 《Open Journal of Yangtze Oil and Gas》 2021年第3期83-97,共15页
Combined with the current research status in this area at home and abroad, with the improvement of salt and high temperature resistance as the research goal, the laboratory research of salt and high temperature resist... Combined with the current research status in this area at home and abroad, with the improvement of salt and high temperature resistance as the research goal, the laboratory research of salt and high temperature resistant drilling fluid system has been carried out, and lubricants, inhibitors and stabilizers have been optimized. The final drilling fluid formula is: water + 3% sepiolite + 0.3% Na<sub>2</sub>CO<sub>3</sub> + 3% RH-225 + 3% KCOOH + 3% G-SPH + 3% CQA-10 + 1.5% ZX-1 + Xinjiang barite, density 2.2 g/cm<sup>3</sup>, using hot-rolling furnace, environmental scanning electron microscope, high temperature and high pressure plugging instrument and Zeiss microscopes and other instruments use core immersion experiments, permeability recovery value experiments, and static stratification index methods to perform temperature resistance, reservoir protection, plugging performance, and static settlement stability performance of the configured drilling fluid., Inhibition performance, biological toxicity, salt resistance, anti-pollution performance have been tested, and it is concluded that the temperature resistance is good under the condition of 210°C, and the salt resistance can meet the requirements of 20% NaCl + 0.5% CaCl<sub>2</sub> concentration. It has a good reservoir protection effect, the permeability recovery value can reach more than 90%, the performance of restraining water dispersion and cuttings expansion is good, the heat roll recovery rate can reach more than 85%, and the SSSI value shows that its settlement stability performance is good;Its plugging performance is good under high temperature and high pressure. It laid the foundation for the next step to promote the field application of the drilling fluid system. 展开更多
关键词 Salt Resistance high temperature Resistance Drilling Fluid Performance Evaluation
下载PDF
High temperature oxidation resistance and microstructure change of aluminized coating on copper substrate 被引量:5
6
作者 王红星 张炎 +1 位作者 成家林 李玉山 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期184-190,共7页
The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the... The outermost coating with single phase Ni2Al3 was obtained on copper surface by electrodepositing nickel followed by slurry pack aluminizing at 800 °C for 12 h. The oxidation resistance and microstructure of the coating oxidized in ambient air at 1000 °C for 25-250 h were investigated using SEM, X-ray diffraction and optical microscope methods. The results show that the copper with single phase Ni2Al3 coating possesses the best high temperature oxidation resistance, and the mass gain of the coating is 1/15 that of pure copper and 1/2 that of nickel coating, respectively. The specimen surface after being oxidized for 25 h still comprises Ni2Al3 phase. However, when the time of oxidizing treatment increases to 50 h, the Ni Al phase is formed. It is also found that the Ni2Al3 phase completely turns into Ni Al phase after oxidizing treatment for 100 h and above. The Ni Al coating shows excellent high temperature oxidation resistance when oxidation time is 250 h. 展开更多
关键词 COPPER Ni2Al3 coating high temperature oxidation resistance NiAl phase pack aluminizing
下载PDF
Microstructure and high temperature oxidation resistance of Si-Y co-deposition coatings prepared on TiAl alloy by pack cementation process 被引量:6
7
作者 李涌泉 谢发勤 吴向清 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期803-810,共8页
In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstruc... In order to improve the high temperature oxidation resistance of TiAl alloy, Y modified silicide coatings were prepared by pack cementation process at 1030, 1080 and 1130 °C, respectively, for 5 h. The microstructures, phase constitutions and oxidation behavior of these coatings were studied. The results show that the coating prepared by co-depositing Si?Y at 1080 °C for 5 h has a multiple layer structure: a superficial zone consisting of Al-rich (Ti,Nb)5Si4 and (Ti,Nb)5Si3, an out layer consisting of (Ti,Nb)Si2, a middle layer consisting of (Ti,Nb)5Si4 and (Ti,Nb)5Si3, and aγ-TiAl inner layer. Co-deposition temperature imposes strong influences on the coating structure. The coating prepared by Si?Y co-depositing at 1080 °C for 5 h shows relatively good oxidation resistance at 1000 °C in air, and the oxidation rate constant of the coating is about two orders of magnitude lower than that of the bare TiAl alloy. 展开更多
关键词 TiAl alloy Si-Y co-deposition coating MICROSTRUCTURE high temperature oxidation resistance pack cementation process
下载PDF
Research progress and development of deep and ultra-deep drilling fluid technology
8
作者 SUN Jinsheng YANG Jingbin +2 位作者 BAI Yingrui LYU Kaihe LIU Fengbao 《Petroleum Exploration and Development》 SCIE 2024年第4期1022-1034,共13页
The research progress of deep and ultra-deep drilling fluid technology systematically reviewed,the key problems existing are analyzed,and the future development direction is proposed.In view of the high temperature,hi... The research progress of deep and ultra-deep drilling fluid technology systematically reviewed,the key problems existing are analyzed,and the future development direction is proposed.In view of the high temperature,high pressure and high stress,fracture development,wellbore instability,drilling fluid lost circulation and other problems faced in the process of deep and ultra-deep complex oil and gas drilling,scholars have developed deep and ultra-deep high-temperature and high-salt resistant water-based drilling fluid technology,high-temperature resistant oil-based/synthetic drilling fluid technology,drilling fluid technology for reservoir protection and drilling fluid lost circulation control technology.However,there are still some key problems such as insufficient resistance to high temperature,high pressure and high stress,wellbore instability and serious lost circulation.Therefore,the development direction of deep and ultra-deep drilling fluid technology in the future is proposed:(1)The technology of high-temperature and high-salt resistant water-based drilling fluid should focus on improving high temperature stability,improving rheological properties,strengthening filtration control and improving compatibility with formation.(2)The technology of oil-based/synthetic drilling fluid resistant to high temperature should further study in the aspects of easily degradable environmental protection additives with low toxicity such as high temperature stabilizer,rheological regulator and related supporting technologies.(3)The drilling fluid technology for reservoir protection should be devoted to the development of new high-performance additives and materials,and further improve the real-time monitoring technology by introducing advanced sensor networks and artificial intelligence algorithms.(4)The lost circulation control of drilling fluid should pay more attention to the integration and application of intelligent technology,the research and application of high-performance plugging materials,the exploration of diversified plugging techniques and methods,and the improvement of environmental protection and production safety awareness. 展开更多
关键词 deep and ultra-deep drilling high temperature resistant drilling fluid reservoir protection drilling fluid lost circulation control safety and environmental protection technical prospects
下载PDF
Structures and Properties of High-Carbon High Speed Steel by RE-Mg-Ti Compound Modification
9
作者 符寒光 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第2期48-51,共4页
The effects of rare earths(RE)-Mg-Ti compound modification on the structures and properties of high-carbon high speed steel(HSS) were researched.The impact toughness(α_k),the fracture toughness(K_(1c))and threshold o... The effects of rare earths(RE)-Mg-Ti compound modification on the structures and properties of high-carbon high speed steel(HSS) were researched.The impact toughness(α_k),the fracture toughness(K_(1c))and threshold of fatigue crack growth(ΔK_(th))are tested.The thermal fatigue test is done on a self-straining thermal fatigue tester,the wear test is done on a high temperature wear test machine.The results show that the matrix can be refined by the RE-Mg-Ti compound modification,the eutectic carbides are inclined to spheroidicize and are distributed evenly,the morphology and distribution of eutectic carbides are improved by appropriate RE-Mg-Ti complex modification.After RE-Mg-Ti compound modification,a little effects can be found on the strength,hardness and red hardness,but the fracture toughness(K_(1c)) and threshold of fatigue crack growth(△K_(th)) are improved in the meantime,the impact toughness (α_k) is increased by over one time,and the resistance to thermal fatigue and wear resistance at an elevated temperature are remarkably improved. 展开更多
关键词 high-carbon high speed steel RE-Mg-Ti compound modification thermal fatigue high temperature wear resistance
下载PDF
Study and Application of a New Association Polymer System for Profile Control 被引量:2
10
作者 赵化廷 赵普春 +1 位作者 陈洪 张三辉 《Petroleum Science》 SCIE CAS CSCD 2004年第4期47-56,共10页
A new polymer system, referred to simply as the AP-P4 polymer system, aims at solving the problems of high temperature, high salinity and the poor shearing resistance, all of which are encountered by conventional ... A new polymer system, referred to simply as the AP-P4 polymer system, aims at solving the problems of high temperature, high salinity and the poor shearing resistance, all of which are encountered by conventional polymers (such as polyacrylamide) used in profile control, profile performance improvement and EOR operations in the Zhongyuan Oilfield, Sinopec. This system has been developed on the basis of the specific molecular structure and the better properties of high temperature resistance, high salinity resistance and strong shearing resistance of the new type of AP-P4 association polymer. Acidity modifying agents and cross-linking agents (MZ-YL, MZ-BE, MZ-XS), compatible with the new polymer system, are selected. Results of performance tests have shown that the new polymer system has excellent thickening, high temperature, high salinity and shearing resistance and anti-dehydrating properties. In 2003, it underwent its first pilot test in 26 wells in China, with remarkable effects in increasing oil production and decreasing water production. The newly developed polymer system and its application technology described in this paper may play a guiding role in polymer profile control operations in the oil reservoirs of high temperature and high salinity. 展开更多
关键词 association polymer profile control high temperature resistance high salinity resistance strong shearing resistance
下载PDF
Excellent electromagnetic wave absorption of MOF/SiBCN nanomaterials at high temperature 被引量:4
11
作者 Chunjia LUO Peng MIAO +1 位作者 Yusheng TANG Jie KONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第11期277-291,共15页
Electromagnetic wave absorbing materials at high-temperature are urgently needed for stealth aircrafts or aero-engines worked in harsh environments.In this contribution,cobaltcontaining siliconboron carbonitride(MOF/S... Electromagnetic wave absorbing materials at high-temperature are urgently needed for stealth aircrafts or aero-engines worked in harsh environments.In this contribution,cobaltcontaining siliconboron carbonitride(MOF/SiBCN)nanomaterials were prepared by pyrolyzing metal–organic framework,i.e.cobalt 2-methylimidazole(ZIF-67),and hyperbranched polyborosilazane.The rhombic dodecahedral ZIF-67 and cobalt element promoted in situ formation of dielectric loss phases,including SiC nanocrystals,CoSi nanocrystals and turbostratic carbons.The ZIF-67/SiBCN nanomaterials showed excellent microwave absorption both at room and elevated temperature.The minimum reflection coefficient(RC_(min))was-51.6dB and effective absorption bandwidth(EAB)is 3.93GHz at room temperature.At an elevated temperature of 600℃,the RC_(min) reached-30.29 dB and EAB covered almost the whole X-band(3.95GHz,8.45–12.4GHz).The ZIF-67/SiBCN nanocomposites are promising and useful platform for microwave absorbing materials at high-temperature.It may shed light on the downstream applications in designing next generation areo-engines and stealth aircrafts. 展开更多
关键词 Electromagnetic wave absorption high temperature resistance Metal-organic framework Polymer-derived ceramics Siliconboron carbonitride
原文传递
Development and application of a new hot-work die steel for hot stamping 被引量:7
12
作者 GUAN Hong LUO Aihui 《Baosteel Technical Research》 CAS 2017年第2期11-17,共7页
A new hot-work die steel for hot stamping was developed, and used the die for mass production. The produced die showed good performance owing to its high heat conductivity and wear-resistant characteristics. Two diffe... A new hot-work die steel for hot stamping was developed, and used the die for mass production. The produced die showed good performance owing to its high heat conductivity and wear-resistant characteristics. Two different benchmarking hot-work die steels were investigated, and then compared in terms of their impact ductility, temper characteristics ,heat conductivity, and thermal stability. The result of the high-temperature friction wear test indicated that oxidative wear was the main mode in high temperature. On the basis of the comparison and test results, the alloying composition of the new hot-work die steel was especially designed. The new die steel showed good performance with good wear-resistant quality, as well as temper hardness and heat conductivity of HRC 50 and 34.3 W/( m ~ K), respectively. Furthermore, without surface plasma nitriding, the die made of the new steel had no obvious galling with 6 142 strokes. After surface plasma nitriding, the die completed 40 000 strokes with good surface. The die life is expected to exceed 200 000 strokes. 展开更多
关键词 hot-work steel temper resistance thermal conductivity high temperature wear resistance plasma nitriding
下载PDF
3D-printed controllable gradient pore superwetting structures for high temperature efficient oil-water separation 被引量:4
13
作者 Zhipeng Jin Hui Mei +4 位作者 Yuekai Yan Longkai Pan Hongxia Liu Shanshan Xiao Laifei Cheng 《Journal of Materiomics》 SCIE EI 2021年第1期8-18,共11页
Superwetting surfaces have the potential to address oil pollution in water,through their ability to separate the two.However,it remains a great challenge to fabricate stable and efficient separation structures using c... Superwetting surfaces have the potential to address oil pollution in water,through their ability to separate the two.However,it remains a great challenge to fabricate stable and efficient separation structures using conventional manufacturing techniques.Furthermore,the materials traditionally used for oil-water separation are not stable at high temperature.Therefore,there is a need to develop stable,customizable structures to improve the performance of oil-water separation devices.In recent years,3D printing technology has developed rapidly,and breakthroughs have been made in the fabrication of complicated ceramic structures using this technology.Here,a ceramic material with a gradient pore structure and superhydrophobic/superoleophilic properties was prepared using 3D printing for high-efficiency oil-water separation.The gradient pore structure developed here can support a flux of up to 25434 L/m^(2)h,which is nearly 40%higher than that an analogous structure with straight pores.At 200℃,the oil-water separation performance was maintained at 97.4%.Furthermore,samples of the material exhibited outstanding mechanical properties,and chemical stability in a variety of harsh environments.This study provides an efficient,simple,and reliable method for manufacturing oil-water separation materials using 3D printing,and may have broader implications for both fundamental research and industrial applications. 展开更多
关键词 3D printing Gradient pore structure high temperature resistance Surface functionalization Oil/water separation
原文传递
High Temperature Deformation Behavior of Fe-9Ni-C Alloy 被引量:4
14
作者 ZHANG Kun WU Hui-bin TANG Di 《Journal of Iron and Steel Research International》 SCIE CAS CSCD 2012年第5期58-62,共5页
The high temperature deformation behavior of the 9Ni steel has been studied by the Gleeble-3500 tester. The relationship between deformation resistance and deformation degree, deformation temperature and deformation r... The high temperature deformation behavior of the 9Ni steel has been studied by the Gleeble-3500 tester. The relationship between deformation resistance and deformation degree, deformation temperature and deformation rate was revealed. The results show that when the deformation degree is less than 0.2, the deformation resistance increases by about 70 to 200 MPa, while the deformation degree varied between 0.2 and 0.4, the deformation resist- ance increases by about 30--40 MPa, when the deformation degree is larger than 0.4, the deformation resistance in- creases slowly, some become stable gradually. The influence of deformation temperature on deformation resistance is larger, and deformation resistance at higher temperature is about 160 MPa smaller than at lower temperature. Higher deformation rate leads to larger deformation resistance. The deformation resistance increases about 70 to 110 MPa with the increase of the deformation rate. A new and highly accurate mathematical model of the steel was established to describe the deformation behavior during rolling. 展开更多
关键词 9Ni steel high temperature deformation resistance mathematical model
原文传递
Microstructure and corrosion resistance of sputtered TiN coatings on surface of Zr-4 alloy 被引量:1
15
作者 LIAO Bang-liang MA Jian-guang +6 位作者 ZHU Wei-hua ZHU Hong-mei YANG Kai LIU Yan-hong LI Huai-lin WANG Xiao-jing WANG Xin-lin 《Journal of Chongqing University》 CAS 2018年第1期17-26,共10页
To improve the oxidation resistance and corrosion resistance of Zr-4 alloy, titanium nitride (TIN) coatings were prepared on the Zr-4 alloy with a TiN ceramic target with different ratios of N2. Microstructure and h... To improve the oxidation resistance and corrosion resistance of Zr-4 alloy, titanium nitride (TIN) coatings were prepared on the Zr-4 alloy with a TiN ceramic target with different ratios of N2. Microstructure and high-temperature properties of the TiN coated samples were studied by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction meter (XRD), X-ray photoelectron spectroscopy (XPS), heat treatment furnace and autoclaves, respectively. The x value of the TiN coatings (TiN) ranges from 0.96 to 1.33. After the introduction of N2, TiN coating exhibits a weak (200) plane and a preferred (111) orientation. The coating prepared with an N2 flow ratio of 15% shows an optimal oxidation resistance in the atmospheric environment at 800 ℃. In either 1 200 ℃ steam environment for one hour, or deionized water at 360 ℃ and a pressure of 18.6 Mpa for 16 d, the opitimized TiN coated samples have no delamination or spallation; and the gains in the masses of samples are much smaller than Zr-4 alloy. These results demonstrate the effectiveness of the optimized TiN coating as the protective coating on the Zr-4 alloy under extreme conditons. 展开更多
关键词 Zr-4 alloy magnetron sputtering TiN coating high temperature oxidation resistance corrosion resistance
下载PDF
Resistivity response to the porosity and permeability of low rank coal 被引量:4
16
作者 Wang Gang Qin Yong +3 位作者 Shen Jian Hu Yuanyuan Liu Donghai Zhao Long 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第2期339-344,共6页
Laojunmiao coal samples from the eastern Junggar basin were studied to understand the relationship between coal resistivity and the physical parameters of coal reservoirs under high temperatures and pressures.Specific... Laojunmiao coal samples from the eastern Junggar basin were studied to understand the relationship between coal resistivity and the physical parameters of coal reservoirs under high temperatures and pressures.Specifically,we analysed the relationship of coal resistivity to porosity and permeability via heating and pressurization experiments.The results indicated that coal resistivity decreases exponentially with increasing pressure.Increasing the temperature decreases the resistivity.The sensitivity of coal resistivity to the confining pressure is worse when the temperature is higher.The resistivity of dry coal samples was linearly related to φ~m.Increasing the temperature decreased the cementation exponent(m).Increasing the confining pressure exponentially decreases the porosity.Decreasing the pressure increases the resistivity and porosity for a constant temperature.Increasing the temperature yields a quadratic relationship between the resistivity and permeability for a constant confining pressure.Based on the Archie formula,we obtained the coupling relationship between coal resistivity and permeability for Laojunmiao coal samples at different temperatures and confining pressures. 展开更多
关键词 high temperature and high pressure Low rank coal Resistivity Porosity Permeability
下载PDF
Hyperelastic Graphene Aerogels Reinforced by In‑suit Welding Polyimide Nano Fiber with Leaf Skeleton Structure and Adjustable Thermal Conductivity for Morphology and Temperature Sensing 被引量:5
17
作者 Weida Yin Mengmeng Qin +2 位作者 Huitao Yu Jinxu Sun Wei Feng 《Advanced Fiber Materials》 SCIE EI 2023年第3期1037-1049,共13页
Graphene-aerogel-based flexible sensors have heat tolerances and electric-resistance sensitivities superior to those of polymer-based sensors.However,graphene sheets are prone to slips under repeated compression due t... Graphene-aerogel-based flexible sensors have heat tolerances and electric-resistance sensitivities superior to those of polymer-based sensors.However,graphene sheets are prone to slips under repeated compression due to inadequate chemical con-nections.In addition,the heat-transfer performance of existing compression strain sensors under stress is unclear and lacks research,making it difficult to perform real-temperature detections.To address these issues,a hyperelastic polyimide fiber/graphene aerogel(PINF/GA)with a three-dimensional interconnected structure was fabricated by simple one-pot compound-ing and in-situ welding methods.The welding of fiber lap joints promotes in-suit formation of three-dimensional crosslinked networks of polyimide fibers,which can effectively avoid slidings between fibers to form reinforced ribs,preventing graphene from damage during compression.In particular,the inner core of the fiber maintains its macromolecular chain structure and toughness during welding.Thus,PINF/GA has good structural stabilities under a large strain compression(99%).Moreover,the thermal and electrical conductivities of PINF/GA could not only change with various stresses and strains but also keep the change steady at specific stresses and strains,with its thermal-conductivity change ratio reaching up to 9.8.Hyperelastic PINF/GA,with dynamically stable thermal and electrical conductivity,as well as high heat tolerance,shows broad applica-tion prospects as sensors in detecting the shapes and temperatures of unknown objects in extreme environments. 展开更多
关键词 Graphene aerogel Fiber welding highly compressible high and low temperature resistance Cyclic stability Flexible tactile sensor
原文传递
Zirconia Hollow Spheres and Their Application
18
作者 GAO Qianyu WU Aijun +1 位作者 WANG Qi YIN Hongji 《China's Refractories》 CAS 2018年第4期26-30,共5页
Zirconia hollow sphere products are ultra-high temperature energy saving lightweight insulating refractories in zirconia system.They not only have the same refractoriness as zirconia products,but also have the advanta... Zirconia hollow sphere products are ultra-high temperature energy saving lightweight insulating refractories in zirconia system.They not only have the same refractoriness as zirconia products,but also have the advantages of low bulk density and excellent thermal insulation properties.Their thermal conductivity is 0.3-0.4 W · m-1 · K-1 only 1/2 of that of the ordinary zirconia products.They are special refractories which can be used steadily up to 2 400 ℃ in oxidation,reduction and vacuum atmospheres.Zirconia hollow sphere products are the best lining refractories for various ultra-high temperature kilns and furnaces of tungsten and molybdenum metal products processing,artificial crystals,and quartz industrial production. 展开更多
关键词 zirconia hollow sphere high temperature resistance thermal insulation APPLICATION
下载PDF
Synthesis of Modified Epoxy Resin Undercoat for Resistor by Nano-SiO_2
19
作者 王秀宇 张之圣 +1 位作者 李海燕 胡明 《Transactions of Tianjin University》 EI CAS 2006年第3期193-198,共6页
A kind of undercoat for resistor with high temperature and humidity resistance was obtained by modifying epoxy resin with proper nano-SiO2 added at 80℃. The structure, thermal stability, humidity resistance, and morp... A kind of undercoat for resistor with high temperature and humidity resistance was obtained by modifying epoxy resin with proper nano-SiO2 added at 80℃. The structure, thermal stability, humidity resistance, and morphological characteristics of the modified epoxy resin undercoat were studied by electrical tests, infrared spectra (IR) analysis, and scanning electron microscopy (SEM). The results show that more compact and steady inter-crosslinked network structures are formed in the modified epoxy resin undercoat added with nano-SiO2, which greatly improves the performance of modified epoxy resin undercoat. The undercoat with nano-SiO2 of about 2. 71%, kept for six months at room temperature without flocculating and aggregating, is of good stability, and the surface of painted resistor is uniform, tight and without air holes on it. The varying ratio of resistance with such undercoat painted is less than one in a thousand after high temperature and humidity resistance tests. 展开更多
关键词 epoxy resin NANO-SIO2 undercoat high temperature and humidity resistance
下载PDF
Study on a Polyamine-Based Anti-Collapse Drilling Fluid System
20
作者 Wenwu Zheng Fu Liu +5 位作者 Jing Han Binbin He Shunyuan Zhang Qichao Cao Xiong Wang Xintong Li 《Open Journal of Yangtze Oil and Gas》 CAS 2022年第3期203-212,共10页
In complex strata, oil-based drilling fluid is the preferred drilling fluid system, but its preparation cost is high, and there are hidden safety risks. Therefore, the new progress of high-performance anti-collapse wa... In complex strata, oil-based drilling fluid is the preferred drilling fluid system, but its preparation cost is high, and there are hidden safety risks. Therefore, the new progress of high-performance anti-collapse water-based drilling fluid at home and abroad is analyzed. It is difficult to prevent and control the well collapse. Once the well wall instability problem occurs, it will often bring huge economic losses to the enterprises, and the underground safety accidents will occur. In order to ensure the stability of the well wall and improve the downhole safety, the key treatment agent of water-based collapse drilling fluid is selected, the anti-collapse drilling fluid system is formulated, the evaluation method of drilling fluid prevention performance is established, and a set of water-based drilling fluid system suitable for easy to collapse strata in China is selected to ensure the downhole safety. The development trend of high performance anti-collapse water-based drilling fluid is expected to provide a reference for the research of high performance anti-collapse water-based drilling fluid system and key treatment agent. 展开更多
关键词 Well Wall Stability Anti-Collapse Water-Based Drilling Fluid Evaluation Method high temperature Resistance Salt Resistance
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部