High-temperature oxidation is an important property to evaluate thermal protection materials. However, since oxidation is a complex process involving microstructure evolution, its quantitative analysis has always been...High-temperature oxidation is an important property to evaluate thermal protection materials. However, since oxidation is a complex process involving microstructure evolution, its quantitative analysis has always been a challenge. In this work, a phase field method (PFM) based on the thermodynamics theory is developed to simulate the oxidation behavior and oxidation induced growth stress. It involves microstructure evolution and solves the problem of quantitatively computational analysis for the oxidation behavior and growth stress. Employing this method, the diffusion process, oxidation performance, and stress evolution axe predicted for Fe-Cr-A1-Y alloys. The numerical results agree well with the experimental data. The linear relationship between the maximum growth stress and the environment oxygen concentration is found. PFM provides a powerful tool to investigate high-temperature oxidation in complex environments.展开更多
Self-propagating high-temperature synthesis(SHS)was used to fabricate a Fe(Cr)–Al2O3 nanocomposite.The composite was fabricated by the reactions between the powders of Fe,Fe2O3,Cr2O3,and Al.The effect of blending rat...Self-propagating high-temperature synthesis(SHS)was used to fabricate a Fe(Cr)–Al2O3 nanocomposite.The composite was fabricated by the reactions between the powders of Fe,Fe2O3,Cr2O3,and Al.The effect of blending ratio and mechanical activation of the initial powders and the precursor compressing pressure on the microstructure of the final product was studied by optical microscopy,scanning electron microscopy,transmission electron microscopy,and X-ray diffraction.The significance of the effect of each of the aforementioned parameters on the quality of the composite(assessed by measuring the compressive strength and wear resistance)was determined using a full-factorial design of experiments method.The results showed that the best molar powder ratio that produced the most homogeneous product through a sustainable SHS reaction was Fe:Fe2O3:Cr2O3:Al=10:1:1:4.A lower Fe content caused the Fe(Cr)phase to melt and separate from the rest of the materials.展开更多
The mechanism of self-propagating high-temperature synthesis (SHS) of TiC-Cu cermets was studied using a combustion front quenching method. Microstructural evolution in the quenched sample was observed using scannin...The mechanism of self-propagating high-temperature synthesis (SHS) of TiC-Cu cermets was studied using a combustion front quenching method. Microstructural evolution in the quenched sample was observed using scanning electron microscope (SEM) with energy dispersive X-ray (EDX) spectrometry, and the combustion temperature was measured. The results showed that the combustion reaction started with local formation of Ti-Cu melt and could be described with the dissolution-precipitation mechanism, namely, Ti, Cu, and C particles dissolved into the Ti-Cu solution and TiC particles precipitated in the saturated Ti-Cu-C liquid solution. The local formation of Ti-Cu melt resulted from the solid diffusion between Ti and Cu particles.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 90505015 and10702035)
文摘High-temperature oxidation is an important property to evaluate thermal protection materials. However, since oxidation is a complex process involving microstructure evolution, its quantitative analysis has always been a challenge. In this work, a phase field method (PFM) based on the thermodynamics theory is developed to simulate the oxidation behavior and oxidation induced growth stress. It involves microstructure evolution and solves the problem of quantitatively computational analysis for the oxidation behavior and growth stress. Employing this method, the diffusion process, oxidation performance, and stress evolution axe predicted for Fe-Cr-A1-Y alloys. The numerical results agree well with the experimental data. The linear relationship between the maximum growth stress and the environment oxygen concentration is found. PFM provides a powerful tool to investigate high-temperature oxidation in complex environments.
文摘Self-propagating high-temperature synthesis(SHS)was used to fabricate a Fe(Cr)–Al2O3 nanocomposite.The composite was fabricated by the reactions between the powders of Fe,Fe2O3,Cr2O3,and Al.The effect of blending ratio and mechanical activation of the initial powders and the precursor compressing pressure on the microstructure of the final product was studied by optical microscopy,scanning electron microscopy,transmission electron microscopy,and X-ray diffraction.The significance of the effect of each of the aforementioned parameters on the quality of the composite(assessed by measuring the compressive strength and wear resistance)was determined using a full-factorial design of experiments method.The results showed that the best molar powder ratio that produced the most homogeneous product through a sustainable SHS reaction was Fe:Fe2O3:Cr2O3:Al=10:1:1:4.A lower Fe content caused the Fe(Cr)phase to melt and separate from the rest of the materials.
基金This work was financially supported by the Natural Science Foundation of Shaanxi Province, China (No.2004E107)
文摘The mechanism of self-propagating high-temperature synthesis (SHS) of TiC-Cu cermets was studied using a combustion front quenching method. Microstructural evolution in the quenched sample was observed using scanning electron microscope (SEM) with energy dispersive X-ray (EDX) spectrometry, and the combustion temperature was measured. The results showed that the combustion reaction started with local formation of Ti-Cu melt and could be described with the dissolution-precipitation mechanism, namely, Ti, Cu, and C particles dissolved into the Ti-Cu solution and TiC particles precipitated in the saturated Ti-Cu-C liquid solution. The local formation of Ti-Cu melt resulted from the solid diffusion between Ti and Cu particles.