A new structural phase of MgV2O6 was obtained by a high-pressure, high-temperature (HPHT) synthesis method. The new phase was investigated by the Rietveld analysis of X-ray powder diffraction data, showing space gro...A new structural phase of MgV2O6 was obtained by a high-pressure, high-temperature (HPHT) synthesis method. The new phase was investigated by the Rietveld analysis of X-ray powder diffraction data, showing space group Pbcn (No. 60) symmetry and a = 13.6113(6)A (1A =0.1 nm), b = 5.5809(1)A, c = 4.8566(3)A, V = 368.93(2)A3 (Z = 4). High pressure behavior was studied by Raman spectroscopy at room temperature. Under 22.5 GPa, there was no sign of a structural phase transition in the spectra, demonstrating stability of the HPHT phase up to the highest pressure.展开更多
In this paper, Cr-doped LiSrAlF6 crystals are investigated using high-temperature Raman spectroscopy and the single-crystal Raman spectra of Cr:LiSrAlF6 are analysed by factor group theory and comparison with other f...In this paper, Cr-doped LiSrAlF6 crystals are investigated using high-temperature Raman spectroscopy and the single-crystal Raman spectra of Cr:LiSrAlF6 are analysed by factor group theory and comparison with other fluorides. The results indicate that Cr:LiSrAlF6 is stable below its melting point; Raman peaks located at 561,322 and 250 cm-1 are assigned to the Alg modes of AlF6, SrF6 and LiF6 octachdra, respectively; with temperature increasing, Raman peaks associated with AlF6 octahedra shift towards low frequencies, while LiF6 and SrF6 octahedra are temperature- insensitive; around the crystal melting point, three new Raman peaks occur, which are associated with the AlF6 octahedral chain structure. Finally, the microstruetural evolution of Cr:LiSrAlF6 from room temperature to its melting point is discussed based on its Raman spectra.展开更多
Self-heating in a multifinger A1GaN/GaN high electron mobility transistor (HEMT) is investigated by micro-Raman spectroscopy, The device temperature is probed on the die as a function of applied bias. The operating ...Self-heating in a multifinger A1GaN/GaN high electron mobility transistor (HEMT) is investigated by micro-Raman spectroscopy, The device temperature is probed on the die as a function of applied bias. The operating temperature of the A1GaN/GaN HEMT is estimated from the calibration curve of a passively heated A1GaN/GaN structure. A linear increase of junction temperature is observed when direct current dissipated power is increased. When the power dissipation is 12.75 W at a drain voltage of 15 V, a peak temperature of 69.1 ℃ is observed at the gate edge on the drain side of the central finger. The position of the highest temperature corresponds to the high-field region at the gate edge.展开更多
Raman spectra of a vanadoborate (Na3VO2B6Oll) crystal from room temperature up to the melting point have been recorded. The main internal vibrational modes of the crystal have been assigned. It was found that all th...Raman spectra of a vanadoborate (Na3VO2B6Oll) crystal from room temperature up to the melting point have been recorded. The main internal vibrational modes of the crystal have been assigned. It was found that all the Raman bands exhibit decreases in frequency and the widths of the Raman bands increase with the increase of temperature. However, no phase transition was observed under 525 ℃. The micro-structure of its melt was studied by quantum chemistry ab initio calculation. The continuous three-dimensional network of the crystal collapsed and transformed into VO4 and VBO6 clusters during the melting process with an isomerization reaction from four-coordinated boron to a three-coordinated species.展开更多
A temperature-dependent Raman spectroscopic study on Bi2 Zn OB2O6crystal was carried out to investigate the structure change of the crystal with the increase of temperature. Raman spectra of crystal Bi2 Zn OB2O6were r...A temperature-dependent Raman spectroscopic study on Bi2 Zn OB2O6crystal was carried out to investigate the structure change of the crystal with the increase of temperature. Raman spectra of crystal Bi2 Zn OB2O6were recorded in the spectral range 10–1600 cm-1at room temperature first. Compared with the vibrational spectra of the referred compounds,satisfactory assignment of most of the high-energy modes to vibrations of Bi–O, B–O, and Zn–O bonds was achieved. In particular, the Raman high-frequency peak located at 1344 cm-1was attributed to the B–O vibration in the BO3 triangle.This temperature-dependent Raman spectroscopic study was carried out up to 600°C. It was found that all the Raman lines exhibit decreases in frequency and the widths of the Raman peaks increase with increasing temperature. No phase transition was observed under 600°C.展开更多
在第四代反应堆中,核石墨作为慢化体和反射体材料服役于高温和高通量的快中子辐照环境中。快中子辐照会在核石墨中产生大量的弗伦克尔缺陷对。这些缺陷经过湮灭、扩散、最终形成更大的缺陷团簇,从而改变核石墨的微观结构,进而改变核石...在第四代反应堆中,核石墨作为慢化体和反射体材料服役于高温和高通量的快中子辐照环境中。快中子辐照会在核石墨中产生大量的弗伦克尔缺陷对。这些缺陷经过湮灭、扩散、最终形成更大的缺陷团簇,从而改变核石墨的微观结构,进而改变核石墨的宏观性能。因此,研究核石墨在高温辐照条件下的缺陷演化行为和机理对提高反应堆安全性具有重要意义。本研究采用30 MeV的^(107)Ag^(5+)离子在420℃下辐照IG-110核石墨来模拟核石墨在快中子辐照过程中的缺陷演化行为。通过微区拉曼光谱对IG-110核石墨截面结构进行表征,并对比不同深度处的拉曼光谱特征参数和辐照损伤剂量之间的关系,研究IG-110核石墨微观结构随辐照损伤剂量(Displacements Per Atom,DPA)的演化行为。研究结果表明,随着注量的增加,核石墨拉曼光谱的特征参数D峰高度与G峰高度比值(I_(D)/I_(G))、G峰半高宽(Full Width at Half Maximum of the G peak,FWHM(G))以及G峰的偏移量都显著增加。与^(58)Ni^(5+)辐照样品相比,相同辐照损伤剂量下,^(107)Ag^(5+)辐照的石墨拉曼光谱的I_(D)/I_(G)和FWHM(G)更大。相同的FWHM(G)下,^(107)Ag^(5+)辐照的石墨拉曼光谱的I_(D)/I_(G)比^(58)Ni^(5+)辐照样品大。这些结果说明更重的重离子辐照会在核石墨中引起更高速率的缺陷积累,从而更快地导致石墨晶粒尺寸变小,并促进纳米晶化进程。展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 51172091)the Program for New Century Excellent Talents in University
文摘A new structural phase of MgV2O6 was obtained by a high-pressure, high-temperature (HPHT) synthesis method. The new phase was investigated by the Rietveld analysis of X-ray powder diffraction data, showing space group Pbcn (No. 60) symmetry and a = 13.6113(6)A (1A =0.1 nm), b = 5.5809(1)A, c = 4.8566(3)A, V = 368.93(2)A3 (Z = 4). High pressure behavior was studied by Raman spectroscopy at room temperature. Under 22.5 GPa, there was no sign of a structural phase transition in the spectra, demonstrating stability of the HPHT phase up to the highest pressure.
基金Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 50932005) and the Open Poject of Shanghai Key Laboratory of Modern Metallurgy and Materials Processing (Grant No. SELF-2009-01).
文摘In this paper, Cr-doped LiSrAlF6 crystals are investigated using high-temperature Raman spectroscopy and the single-crystal Raman spectra of Cr:LiSrAlF6 are analysed by factor group theory and comparison with other fluorides. The results indicate that Cr:LiSrAlF6 is stable below its melting point; Raman peaks located at 561,322 and 250 cm-1 are assigned to the Alg modes of AlF6, SrF6 and LiF6 octachdra, respectively; with temperature increasing, Raman peaks associated with AlF6 octahedra shift towards low frequencies, while LiF6 and SrF6 octahedra are temperature- insensitive; around the crystal melting point, three new Raman peaks occur, which are associated with the AlF6 octahedral chain structure. Finally, the microstruetural evolution of Cr:LiSrAlF6 from room temperature to its melting point is discussed based on its Raman spectra.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CBA00600)the National Natural Science Foundation of China (Grant No. 61106106)the Fundamental Research Funds for the Central Universities, China (Grant No. K50510250006)
文摘Self-heating in a multifinger A1GaN/GaN high electron mobility transistor (HEMT) is investigated by micro-Raman spectroscopy, The device temperature is probed on the die as a function of applied bias. The operating temperature of the A1GaN/GaN HEMT is estimated from the calibration curve of a passively heated A1GaN/GaN structure. A linear increase of junction temperature is observed when direct current dissipated power is increased. When the power dissipation is 12.75 W at a drain voltage of 15 V, a peak temperature of 69.1 ℃ is observed at the gate edge on the drain side of the central finger. The position of the highest temperature corresponds to the high-field region at the gate edge.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51302268 and 51102239)the Natural Science Foundation of Anhui Province,China(Grant No.KJ2015A339)
文摘Raman spectra of a vanadoborate (Na3VO2B6Oll) crystal from room temperature up to the melting point have been recorded. The main internal vibrational modes of the crystal have been assigned. It was found that all the Raman bands exhibit decreases in frequency and the widths of the Raman bands increase with the increase of temperature. However, no phase transition was observed under 525 ℃. The micro-structure of its melt was studied by quantum chemistry ab initio calculation. The continuous three-dimensional network of the crystal collapsed and transformed into VO4 and VBO6 clusters during the melting process with an isomerization reaction from four-coordinated boron to a three-coordinated species.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.50932005 and 51102239)
文摘A temperature-dependent Raman spectroscopic study on Bi2 Zn OB2O6crystal was carried out to investigate the structure change of the crystal with the increase of temperature. Raman spectra of crystal Bi2 Zn OB2O6were recorded in the spectral range 10–1600 cm-1at room temperature first. Compared with the vibrational spectra of the referred compounds,satisfactory assignment of most of the high-energy modes to vibrations of Bi–O, B–O, and Zn–O bonds was achieved. In particular, the Raman high-frequency peak located at 1344 cm-1was attributed to the B–O vibration in the BO3 triangle.This temperature-dependent Raman spectroscopic study was carried out up to 600°C. It was found that all the Raman lines exhibit decreases in frequency and the widths of the Raman peaks increase with increasing temperature. No phase transition was observed under 600°C.
文摘在第四代反应堆中,核石墨作为慢化体和反射体材料服役于高温和高通量的快中子辐照环境中。快中子辐照会在核石墨中产生大量的弗伦克尔缺陷对。这些缺陷经过湮灭、扩散、最终形成更大的缺陷团簇,从而改变核石墨的微观结构,进而改变核石墨的宏观性能。因此,研究核石墨在高温辐照条件下的缺陷演化行为和机理对提高反应堆安全性具有重要意义。本研究采用30 MeV的^(107)Ag^(5+)离子在420℃下辐照IG-110核石墨来模拟核石墨在快中子辐照过程中的缺陷演化行为。通过微区拉曼光谱对IG-110核石墨截面结构进行表征,并对比不同深度处的拉曼光谱特征参数和辐照损伤剂量之间的关系,研究IG-110核石墨微观结构随辐照损伤剂量(Displacements Per Atom,DPA)的演化行为。研究结果表明,随着注量的增加,核石墨拉曼光谱的特征参数D峰高度与G峰高度比值(I_(D)/I_(G))、G峰半高宽(Full Width at Half Maximum of the G peak,FWHM(G))以及G峰的偏移量都显著增加。与^(58)Ni^(5+)辐照样品相比,相同辐照损伤剂量下,^(107)Ag^(5+)辐照的石墨拉曼光谱的I_(D)/I_(G)和FWHM(G)更大。相同的FWHM(G)下,^(107)Ag^(5+)辐照的石墨拉曼光谱的I_(D)/I_(G)比^(58)Ni^(5+)辐照样品大。这些结果说明更重的重离子辐照会在核石墨中引起更高速率的缺陷积累,从而更快地导致石墨晶粒尺寸变小,并促进纳米晶化进程。