The soybean aphid,Aphis glycines Matsumura,is an important pest of soybean,which is native to Asia.In this study,A.glycines fed on soybean(AgFS)and A.glycines fed on wild soybean(AgFW)were reared at 25℃,27℃,29℃,31...The soybean aphid,Aphis glycines Matsumura,is an important pest of soybean,which is native to Asia.In this study,A.glycines fed on soybean(AgFS)and A.glycines fed on wild soybean(AgFW)were reared at 25℃,27℃,29℃,31℃,33℃and 35℃,respectively,and some of the life parameters were determined.At temperature ranging from 25℃to 31℃,nymphs of AgFS and AgFW all developed into adults successfully.Only a few nymphs of AgFS and AgFW developed into adults at 33℃and no nymphs could develop into adults at 35℃.Lifespan,fecundity and body size of AgFS and AgFW adults all decreased gradually with temperatures increasing from 25℃to 33℃.At 25℃,the intrinsic rate of increase of AgFS was as big as that at 27℃,which was smaller than that at 29℃,but was bigger than that at 31℃.Intrinsic rate of increase of AgFW decreased gradually with temperatures increasing from 25℃to 31℃.Nymph stage duration of AgFW was longer than or as long as that of AgFS;adult lifespan of AgFW was shorter than or as long as that of AgFS.Adult fecundity,intrinsic rate of increase and adult body size of AgFW were all smaller than or as big as those of AgFS.It showed that AgFS and AgFW both survived and developed well at temperature ranging from 25℃to 31℃,and AgFW was more adaptive to low temperatures.These results were important to study the adaptability of A.glycines to high temperatures and for predicting its dynamics in the temperature keeping rising region.展开更多
Biaxial compression tests are performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-strength highperformance concrete (HSHPC) at seven kinds of stress ratios, σ2:σ3 =0 : - 1, -0.20 : - 1...Biaxial compression tests are performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-strength highperformance concrete (HSHPC) at seven kinds of stress ratios, σ2:σ3 =0 : - 1, -0.20 : - 1, -0.30 : - 1, -0.40 : - 1, -0.50 : -1, -0. 75 : - 1, and - 1.00 : - 1 after exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600 ℃, using a large static-dynamic true triaxial machine. Frictionreducing pads are three layers of plastic membranes with glycerine in-between for the compressive loading plane. Failure modes of the specimens are described. The two principally static compressive strengths are measured. The influences of the temperatures and stress ratios on the biaxial strengths of HSHPC after exposure to high temperatures are also analyzed. The experimental results show that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease completely with the increase in temperature; the ratios of the biaxial to its uniaxial compressive strengths depend on the stress ratios and brittleness-stiffness of HSHPC after exposure to different high temperatures. The formula of the Kupfer-Gerstle failure criterion modified with the temperature and stress ratio parameters for plain HSHPC is proposed.展开更多
Tribological behaviour of the die-cast AZ71E magnesium alloy was investigated in an applied load range of 10-50 N at high temperatures under dry sliding conditions using a pin-on-disc wear testing machine. The results...Tribological behaviour of the die-cast AZ71E magnesium alloy was investigated in an applied load range of 10-50 N at high temperatures under dry sliding conditions using a pin-on-disc wear testing machine. The results indicate that the wear rate increases with the increase of applied load and sliding distance, whereas the friction coefficient decreases with the increase of applied load. Scanning electron microscopy and optical microscopy studies on the worn surfaces and sub-surfaces show that the predominant wear mechanism is abrasion at low applied loads. The mild delamination wear accompanying with adhesion wear is the predominant wear mechanism under high applied loads at 150 ℃, whereas the severe delamination and melting wear are the predominant wear mechanisms under high applied load at 200 ℃. An investigation of the microstructure, thermal stability and tensile properties at high temperatures, using the optical microscopy, X-ray diffraction, differential scanning calorimetry, shows that the dominant secondary phase in AZ71E alloy, Al11Ce3, leads to the improvement in the tensile and elongation properties of alloy at high temperatures, which results in the improvement in the anti wear performance.展开更多
In recent years, there has been an increase of interest in the flow of gases at relatively high pressures and high temperatures. Hydrodynamic calculation of the energy losses in the flow of gases in conduits, as well ...In recent years, there has been an increase of interest in the flow of gases at relatively high pressures and high temperatures. Hydrodynamic calculation of the energy losses in the flow of gases in conduits, as well as through the porous media constituting natural petroleum reservoirs, requires knowledge of the viscosity of the fluid at the pressure and temperature involved. Although there are numerous publications concerning the viscosity of methane at atmospheric pressure, there appears to be little information available relating to the effect of pressure and temperature upon the viscosity. A survey of the literature reveals that the disagreements between published data on the viscosity of methane are common and that most investigations have been conducted over restricted temperature and pressure ranges. Experimental viscosity data for methane are presented for temperatures from 320 to 400 K and pressures from 3000 to 140000 kPa by using falling body viscometer. A summary is given to evaluate the available data for methane, and a comparison is presented for that data common to the experimental range reported in this paper. A new and reliable correlation for methane gas viscosity is presented. Predicted values are given for temperatures up to 400 K and pressures up to 140000 kPa with Average Absolute Percent Relative Error (EABS) of 0.794.展开更多
An orthotropic constitutive relationship with temperature parameters for plain highstrength high-performance concrete (HSHPC) under biaxial compression is developed. It is based on the experiments performed for char...An orthotropic constitutive relationship with temperature parameters for plain highstrength high-performance concrete (HSHPC) under biaxial compression is developed. It is based on the experiments performed for characterizing the strength and deformation behavior at two strength levels of HSHPC at 7 different stress ratios including a=σs : σ3=0.00:-1,-0.20:-1,-0.30 : -1,-0.40:-1,-0.50:-1,-0.75:-1,-1.00:-1, after the exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600℃, and using a large static-dynamic true triaxial machine. The biaxial tests were performed on 100 mm×100 mm×100 mm cubic specimens, and friction-reducing pads were used consisting of three layers of plastic membrane with glycerine in-between for the compressive loading plane. Based on the experimental results, failure modes of HSHPC specimens were described. The principal static compressive strengths, strains at the peak stress and stress-strain curves were measured; and the influence of the temperature and stress ratios on them was also analyzed. The experimental results showed that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease dramatically with the increase of temperature. The ratio of the biaxial to its uniaxial compressive strength depends on the stress ratios and brittleness-stiffness of HSHPC after exposure to different temperature levels. Comparison of the stress-strain results obtained from the theoretical model and the experimental data indicates good agreement.展开更多
[Objective] The aim was to research effects of high temperature stress on pepper yield by cultivation of peppers in different genotypes and provide theoretical references for pepper breeding and high-yield cultivation...[Objective] The aim was to research effects of high temperature stress on pepper yield by cultivation of peppers in different genotypes and provide theoretical references for pepper breeding and high-yield cultivation. [Method] Four pepper va- rieties were studied with varied genotypes to explore effects of temperatures on pepper fruiting and yield in the whole growth stage. [Result] The optimal-temperatre term for pepper blooming and fruiting were shorter. For example, the periods from June 16 to July 15 and from August 16 to September 15 would be the best, with temperature ranging from 20.70 ℃ to 30.74 ℃. In the stage from July 16 to August 15, the temperature range of 24.22 ℃-32.17 ℃ would severely affect pepper growth and yield. Pepper No. 1 and pepper No. 1-1's yields were just 38.21% and 51.74% of the yields in the stage 1st and 52.01% and 62.35% in the stage 3rd and eady No. 1 and late No. 1 were 48.1% and 72.38%, respectively. Under high tem- perature stress in summer, pepper No. 1, pepper No. 1-1, and late No. 1 showed extremely significant differences with early No. 1 (P〈0.01). The yield ratios of pep- per No. 1 and pepper No. 1-1 in stage 1st (May 25-July 15) and the later three stages were 42.34:57.66 and 39.50:60.50; the ratio was 47.99:52.21 of early No. 1; the ratio of late No. 1 was 20.25:79.75. [Conclusion] The cultivation approaches should vary upon pepper variety, necessitating the focus on pepper management, fertilization, and irrigation, and locating peak-blooming term in moderate-temperature stage to accelerate pepper growth.展开更多
In order to investigate the laws of variation on tensile strength of butt welded joint post high temperatures, the wide plate tension tests for butt welded joint were conducted after cooling down from different high t...In order to investigate the laws of variation on tensile strength of butt welded joint post high temperatures, the wide plate tension tests for butt welded joint were conducted after cooling down from different high temperatures. The tests indicate that specimens appear ductile fracture at the steel plate during the tension tests after cooling down. The maximum temperatures undergone and the cooling pattern are major factors influencing tensile strength of butt welded joint post high temperatures. The tensile strength mostly reduces by 8% within 900℃. Based on the experimental results, the paper proposes the calculation formulas of tensile strength of butt welded joint post high temperatures. The conclusions of the paper supply references for evaluation damage and reinforcement of steel structure post fire.展开更多
In order to learn the variation laws of shear strength of side fillet weld post high temperatures, the tension tests were conducted after the double-strapped side fillet welded joints which were cooled down from diffe...In order to learn the variation laws of shear strength of side fillet weld post high temperatures, the tension tests were conducted after the double-strapped side fillet welded joints which were cooled down from different high temperatures with different cooling patterns. The tests indicate that specimens appear brittle fracture at the side fillet weld during the tension tests after cooling down. The fracture su(face is located in the welding throat. The maximum temperatures undergone and the cooling pattern are major factors influencing shear strength of side fillet welded joint post high temperatures. The shear strength reduces by 24% at most within 900 ~C. Based on the experimental results, the calculation formulas of shear strength of side fillet weld post high temperatures were proposed. Conclusions supply references for evaluation damage and reinforcement of steel structure post fire.展开更多
Modeling analysis of thin fully depleted SOICMOS technology has been done. Using ISETCAD software,the high temperature characteristics of an SOICMOS transistor were simulated in the temperature range of from 300 to 60...Modeling analysis of thin fully depleted SOICMOS technology has been done. Using ISETCAD software,the high temperature characteristics of an SOICMOS transistor were simulated in the temperature range of from 300 to 600K, and the whole circuit of a laser range finder was simulated with Verilog software. By wafer pro- cessing,a circuit of a laser range finder with complete function and parameters working at high temperatures has been developed. The simulated results agree with the test results. The test of the circuit function and parameters at normal and high temperature shows the realization of an SOICMOS integrated circuit with low power dissipation and high speed, which can be applied in laser range finding. By manufacturing this device, further study on high temperature characteristics of shorter channel SOICMOS integrated circuits can be conducted.展开更多
The addition Of Pb enhances the hightemperature stability as well as theproportion of the high Tphase in Bi-Sr-Ca-Cu-O superconductor.The sample A with nominal composi-tion of BiSrCaCuOwas synthesized bySolid state re...The addition Of Pb enhances the hightemperature stability as well as theproportion of the high Tphase in Bi-Sr-Ca-Cu-O superconductor.The sample A with nominal composi-tion of BiSrCaCuOwas synthesized bySolid state reaction.It was sintered in airat 1153K for 24h,followed by annealingat 773K for 24h and furnace-cooling.The sample B with a nominal compositionof BiPbSrCaCuOwas prepared bymixing PbO with the powder ofBiSrCaCuOwhich had been prefired at1113K for 24h,pressing,sintering at展开更多
Center for Analysis and Prediction, China Seismological Bureau, Beijing 100036, China 2) Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
Superior characteristics of Al Ga N-channel metal-insulator-semiconductor(MIS) high electron mobility transistors(HEMTs) at high temperatures are demonstrated in detail. The temperature coefficient of the maximum ...Superior characteristics of Al Ga N-channel metal-insulator-semiconductor(MIS) high electron mobility transistors(HEMTs) at high temperatures are demonstrated in detail. The temperature coefficient of the maximum saturation drain current for the Al GaN-channel MIS HEMT can be reduced by 50% compared with the Ga N-channel HEMT. Moreover, benefiting from the better suppression of gate current and reduced leakage current in the buffer layer, the Al Ga N-channel MIS HEMT demonstrates an average breakdown electric field of 1.83 MV/cm at25℃ and 1.06 MV/cm at 300℃, which is almost 2 times and 3 times respectively larger than that of the reference Ga N-channel HEMT. Pulsed mode analyses suggest that the proposed device suffers from smaller current collapse when the temperature reaches as high as 300℃.展开更多
Beef tallow is a byproduct of the slaughter industry. As a consequence, meat producer countries obtain a high amount of this low value-added fatty material. In Uruguay, it is generally used for food purposes or for bi...Beef tallow is a byproduct of the slaughter industry. As a consequence, meat producer countries obtain a high amount of this low value-added fatty material. In Uruguay, it is generally used for food purposes or for biodiesel production. Globally, around half of the beef tallow produced worldwide is used for the manufacturing of food. To the best of our knowledge there are no published studies concerning the stability of beef tallow when exposed to high temperatures. The aim of this work was to study some Uruguayan beef tallow brands and compare its stability with that of the most frequently used frying oils in Uruguay (sunflower high oleic, rice bran and sunflower oil) to assess its suitability for frying. Stability was assessed by the oxidative stability index and thermoxidation in absence of food. Even though beef tallow's inherent stability indicated that it should be highly stable to oxidation, the majority of the analyzed samples exhibited a similar or lower stability than sunflower high oleic. This might be explained by a different composition in pro-oxidants and/or antioxidants between the beef tallows and the oils. According to the thermoxidation assays, which are carried out in similar conditions to those of a frying process, three of the beef tallow samples, sunflower high oleic and rice bran oil would be similarly suitable for frying, while sunflower oil and the other two samples of beef tallow evidenced a lower thermoxidative stability, thus not being recommended for this use.展开更多
We analyze the line data from solar flares to present evidence for the emission spectrum of the recently discussed electron-proton pairs at high temperatures. We also point out that since the pairing phenomenon provid...We analyze the line data from solar flares to present evidence for the emission spectrum of the recently discussed electron-proton pairs at high temperatures. We also point out that since the pairing phenomenon provides an additional source for these lines—the conventional source being the highly ionized high-Z atoms already existing in the solar atmosphere, we have a plausible explanation of the FIP effect.展开更多
For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical prope...For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical properties of extruded Mg-Gd-Y Magnesium alloy at ambient temperature(300 K),200℃(473 K)and 300℃(573 K)temperature.The samples after compression were analyzed by scanning electron microscope(SEM)and metallographic microscope.Dynamic mechanical properties,crack performance and plastic deformation mechanism of extruded Mg-Gd-Y Magnesium alloy along the extrusion direction(ED)were discussed.The results show that,extruded Mg-Gd-Y Magnesium alloy has the largest dynamic compressive strength which is 535 MPa at ambient temperature(300 K)and strain rate of 2826 s^(−1).When temperature increases,dynamic compressive strength decreases,while ductility increases.The dynamic compression fracture mechanism of extruded Mg-Gd-Y Magnesium alloy is multi-crack propagation and intergranular quasi-cleavage fracture at both ambient temperature and high temperature.The dynamic compressive deformation mechanism of extruded Mg-Gd-Y Magnesium alloy is a combination of twinning,slipping and dynamic recrystallization at both ambient temperature and high temperature.展开更多
Transformation of mineral matter is important for coal utilization at high temperatures.This is especially true for blended coal.XRD and FTIR were employed together to study the transformation of mineral matter at hig...Transformation of mineral matter is important for coal utilization at high temperatures.This is especially true for blended coal.XRD and FTIR were employed together to study the transformation of mineral matter at high temperature in blended coals.It was found that the concentration of catalytic minerals, namely iron oxides, increases with an increasing ratio of Shenfu coal, which could improve coal gasification.The transformation characteristics of the minerals in blended coals are not exactly predictable from the blend ratio.This was proved by comparing the iron oxide content to the blending ratio.The results from FTIR are comparable with those from XRD.FTIR is an effective method for examining variation in mineral matter.展开更多
Based on reanalyzing test results of uniaxial compressive behavior of concrete at constant high temperatures in China, with the compressive cube strength of concrete from 20 to 80 MPa, unified formulas for uniaxial co...Based on reanalyzing test results of uniaxial compressive behavior of concrete at constant high temperatures in China, with the compressive cube strength of concrete from 20 to 80 MPa, unified formulas for uniaxial compressive strength, elastic modulus, strain at peak uniaxial compression and mathematical expression for unaxial compressive stress-strain relations for the concrete at constant high temperatures were studied. Furthermore, the axial stress-axial strain relations between laterally confined concrete under axial compression and multiaxial stress-strain relations for steel at constant high temperatures were studied. Finally, based on continuum mechanics, the mechanics model for concentric cylinders of circular steel tube with concrete core of entire section loaded at constant high temperatures was established. Applying elasto-plastic analysis method, a FORTRAN program was developed, and the concrete-filled circular steel tubular (CFST) stub colunms at constant high temperatures were analyzed. The analysis results are in agreement with the experiment ones from references.展开更多
The uniaxial time-dependent strain cyclic behaviors and ratcheting of SS304 stainless steel were studied at high temperatures (350 ℃ and 700 ℃). The effects of straining and stressing rates, holding time at the pe...The uniaxial time-dependent strain cyclic behaviors and ratcheting of SS304 stainless steel were studied at high temperatures (350 ℃ and 700 ℃). The effects of straining and stressing rates, holding time at the peak and/or valley of each cycle in addition to ambient temperature on the cyclic softening/hardening behavior and ratcheting of the material were discussed. It can be seen from experimental results that the material presents remarkable time dependence at 700 ℃, and the ratcheting strain depends greatly on the stressing rate, holding time and ambient temperature. Some significant conclusions are obtained, which are useful to build a constitutive model describiog the time-dependent cyclic deformation of the material.展开更多
The elemental composition,heat expansibility and breaking characteristics of limestone have been investigated with the use of an energy spectrum analyzer,a SEM,an optical microscope and an experimental heat swelling p...The elemental composition,heat expansibility and breaking characteristics of limestone have been investigated with the use of an energy spectrum analyzer,a SEM,an optical microscope and an experimental heat swelling power system.The results show that 1) the heat expansibility of limestone has anisotropic properties,and 2) the heat expansion rate in the direction perpendicular to stratification is eight times greater than the rate parallel to stratification.The changes in heat expansibility as a function of heating temperature is essentially coincident with that of swelling and breaking of mineral particles and the appearance of cracks,indicating that the reason for causing the heat expansion of rock are the structural changes of limestone caused by thermal stress,crystal transformation and mineral decomposition.The apparent destruction of limestone under high temperatures is largely characterized by rock stratification breaks.When the limestone is heated beyond a certain limit,the rock destroys into crazed cracks.展开更多
The total internal partition sums were calculated in the product approximation at temperatures up to 5000 K for the asymptotic asymmetric-top HO2 molecule. The calculations of the rotational partition function and the...The total internal partition sums were calculated in the product approximation at temperatures up to 5000 K for the asymptotic asymmetric-top HO2 molecule. The calculations of the rotational partition function and the vibrational partition function were carried out with the rigid-top model and in the harmonic oscillator approximation, respectively. Our values of the total internal partition sums are consistent with the data of HITRAN database with -0.14% at 296 K. Using the calculated partition functions, we have calculated the line intensities of υ2 band of HO2 at several high temperatures. The results showed that the calculated line intensities are in very good agreement with those of HITRAN database at temperatures up to 3000 K, which provides a strong support for the calculations of partition functions and line intensities at high temperatures. Then we have extended the calculation to higher temperatures. The simulated spectra of υ2 band of the asymptotic asymmetric-top HO2 molecule at 4000 and 5000 K are also obtained.展开更多
基金Supported by the Natural Science Foundation of Heilongjiang Province of China(C2015012)Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province of China(LBH-Q15015)。
文摘The soybean aphid,Aphis glycines Matsumura,is an important pest of soybean,which is native to Asia.In this study,A.glycines fed on soybean(AgFS)and A.glycines fed on wild soybean(AgFW)were reared at 25℃,27℃,29℃,31℃,33℃and 35℃,respectively,and some of the life parameters were determined.At temperature ranging from 25℃to 31℃,nymphs of AgFS and AgFW all developed into adults successfully.Only a few nymphs of AgFS and AgFW developed into adults at 33℃and no nymphs could develop into adults at 35℃.Lifespan,fecundity and body size of AgFS and AgFW adults all decreased gradually with temperatures increasing from 25℃to 33℃.At 25℃,the intrinsic rate of increase of AgFS was as big as that at 27℃,which was smaller than that at 29℃,but was bigger than that at 31℃.Intrinsic rate of increase of AgFW decreased gradually with temperatures increasing from 25℃to 31℃.Nymph stage duration of AgFW was longer than or as long as that of AgFS;adult lifespan of AgFW was shorter than or as long as that of AgFS.Adult fecundity,intrinsic rate of increase and adult body size of AgFW were all smaller than or as big as those of AgFS.It showed that AgFS and AgFW both survived and developed well at temperature ranging from 25℃to 31℃,and AgFW was more adaptive to low temperatures.These results were important to study the adaptability of A.glycines to high temperatures and for predicting its dynamics in the temperature keeping rising region.
文摘Biaxial compression tests are performed on 100 mm × 100 mm × 100 mm cubic specimens of plain high-strength highperformance concrete (HSHPC) at seven kinds of stress ratios, σ2:σ3 =0 : - 1, -0.20 : - 1, -0.30 : - 1, -0.40 : - 1, -0.50 : -1, -0. 75 : - 1, and - 1.00 : - 1 after exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600 ℃, using a large static-dynamic true triaxial machine. Frictionreducing pads are three layers of plastic membranes with glycerine in-between for the compressive loading plane. Failure modes of the specimens are described. The two principally static compressive strengths are measured. The influences of the temperatures and stress ratios on the biaxial strengths of HSHPC after exposure to high temperatures are also analyzed. The experimental results show that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease completely with the increase in temperature; the ratios of the biaxial to its uniaxial compressive strengths depend on the stress ratios and brittleness-stiffness of HSHPC after exposure to different high temperatures. The formula of the Kupfer-Gerstle failure criterion modified with the temperature and stress ratio parameters for plain HSHPC is proposed.
基金Project (KLMT201107) supported by the Key Laboratory of Manufacture and Test Techniques for Automobile Parts (Ministry of Education), China
文摘Tribological behaviour of the die-cast AZ71E magnesium alloy was investigated in an applied load range of 10-50 N at high temperatures under dry sliding conditions using a pin-on-disc wear testing machine. The results indicate that the wear rate increases with the increase of applied load and sliding distance, whereas the friction coefficient decreases with the increase of applied load. Scanning electron microscopy and optical microscopy studies on the worn surfaces and sub-surfaces show that the predominant wear mechanism is abrasion at low applied loads. The mild delamination wear accompanying with adhesion wear is the predominant wear mechanism under high applied loads at 150 ℃, whereas the severe delamination and melting wear are the predominant wear mechanisms under high applied load at 200 ℃. An investigation of the microstructure, thermal stability and tensile properties at high temperatures, using the optical microscopy, X-ray diffraction, differential scanning calorimetry, shows that the dominant secondary phase in AZ71E alloy, Al11Ce3, leads to the improvement in the tensile and elongation properties of alloy at high temperatures, which results in the improvement in the anti wear performance.
基金supported by the Research Institute of Petroleum Industry-Kermanshah Campus.
文摘In recent years, there has been an increase of interest in the flow of gases at relatively high pressures and high temperatures. Hydrodynamic calculation of the energy losses in the flow of gases in conduits, as well as through the porous media constituting natural petroleum reservoirs, requires knowledge of the viscosity of the fluid at the pressure and temperature involved. Although there are numerous publications concerning the viscosity of methane at atmospheric pressure, there appears to be little information available relating to the effect of pressure and temperature upon the viscosity. A survey of the literature reveals that the disagreements between published data on the viscosity of methane are common and that most investigations have been conducted over restricted temperature and pressure ranges. Experimental viscosity data for methane are presented for temperatures from 320 to 400 K and pressures from 3000 to 140000 kPa by using falling body viscometer. A summary is given to evaluate the available data for methane, and a comparison is presented for that data common to the experimental range reported in this paper. A new and reliable correlation for methane gas viscosity is presented. Predicted values are given for temperatures up to 400 K and pressures up to 140000 kPa with Average Absolute Percent Relative Error (EABS) of 0.794.
文摘An orthotropic constitutive relationship with temperature parameters for plain highstrength high-performance concrete (HSHPC) under biaxial compression is developed. It is based on the experiments performed for characterizing the strength and deformation behavior at two strength levels of HSHPC at 7 different stress ratios including a=σs : σ3=0.00:-1,-0.20:-1,-0.30 : -1,-0.40:-1,-0.50:-1,-0.75:-1,-1.00:-1, after the exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600℃, and using a large static-dynamic true triaxial machine. The biaxial tests were performed on 100 mm×100 mm×100 mm cubic specimens, and friction-reducing pads were used consisting of three layers of plastic membrane with glycerine in-between for the compressive loading plane. Based on the experimental results, failure modes of HSHPC specimens were described. The principal static compressive strengths, strains at the peak stress and stress-strain curves were measured; and the influence of the temperature and stress ratios on them was also analyzed. The experimental results showed that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease dramatically with the increase of temperature. The ratio of the biaxial to its uniaxial compressive strength depends on the stress ratios and brittleness-stiffness of HSHPC after exposure to different temperature levels. Comparison of the stress-strain results obtained from the theoretical model and the experimental data indicates good agreement.
基金Supported by Jiangsu Agricultural Science and Technology Self-raising Fund(00-05-10-30)~~
文摘[Objective] The aim was to research effects of high temperature stress on pepper yield by cultivation of peppers in different genotypes and provide theoretical references for pepper breeding and high-yield cultivation. [Method] Four pepper va- rieties were studied with varied genotypes to explore effects of temperatures on pepper fruiting and yield in the whole growth stage. [Result] The optimal-temperatre term for pepper blooming and fruiting were shorter. For example, the periods from June 16 to July 15 and from August 16 to September 15 would be the best, with temperature ranging from 20.70 ℃ to 30.74 ℃. In the stage from July 16 to August 15, the temperature range of 24.22 ℃-32.17 ℃ would severely affect pepper growth and yield. Pepper No. 1 and pepper No. 1-1's yields were just 38.21% and 51.74% of the yields in the stage 1st and 52.01% and 62.35% in the stage 3rd and eady No. 1 and late No. 1 were 48.1% and 72.38%, respectively. Under high tem- perature stress in summer, pepper No. 1, pepper No. 1-1, and late No. 1 showed extremely significant differences with early No. 1 (P〈0.01). The yield ratios of pep- per No. 1 and pepper No. 1-1 in stage 1st (May 25-July 15) and the later three stages were 42.34:57.66 and 39.50:60.50; the ratio was 47.99:52.21 of early No. 1; the ratio of late No. 1 was 20.25:79.75. [Conclusion] The cultivation approaches should vary upon pepper variety, necessitating the focus on pepper management, fertilization, and irrigation, and locating peak-blooming term in moderate-temperature stage to accelerate pepper growth.
文摘In order to investigate the laws of variation on tensile strength of butt welded joint post high temperatures, the wide plate tension tests for butt welded joint were conducted after cooling down from different high temperatures. The tests indicate that specimens appear ductile fracture at the steel plate during the tension tests after cooling down. The maximum temperatures undergone and the cooling pattern are major factors influencing tensile strength of butt welded joint post high temperatures. The tensile strength mostly reduces by 8% within 900℃. Based on the experimental results, the paper proposes the calculation formulas of tensile strength of butt welded joint post high temperatures. The conclusions of the paper supply references for evaluation damage and reinforcement of steel structure post fire.
基金The research is supported by the China Postdoctoral Science Foundation (No. 2011M501428).
文摘In order to learn the variation laws of shear strength of side fillet weld post high temperatures, the tension tests were conducted after the double-strapped side fillet welded joints which were cooled down from different high temperatures with different cooling patterns. The tests indicate that specimens appear brittle fracture at the side fillet weld during the tension tests after cooling down. The fracture su(face is located in the welding throat. The maximum temperatures undergone and the cooling pattern are major factors influencing shear strength of side fillet welded joint post high temperatures. The shear strength reduces by 24% at most within 900 ~C. Based on the experimental results, the calculation formulas of shear strength of side fillet weld post high temperatures were proposed. Conclusions supply references for evaluation damage and reinforcement of steel structure post fire.
文摘Modeling analysis of thin fully depleted SOICMOS technology has been done. Using ISETCAD software,the high temperature characteristics of an SOICMOS transistor were simulated in the temperature range of from 300 to 600K, and the whole circuit of a laser range finder was simulated with Verilog software. By wafer pro- cessing,a circuit of a laser range finder with complete function and parameters working at high temperatures has been developed. The simulated results agree with the test results. The test of the circuit function and parameters at normal and high temperature shows the realization of an SOICMOS integrated circuit with low power dissipation and high speed, which can be applied in laser range finding. By manufacturing this device, further study on high temperature characteristics of shorter channel SOICMOS integrated circuits can be conducted.
文摘The addition Of Pb enhances the hightemperature stability as well as theproportion of the high Tphase in Bi-Sr-Ca-Cu-O superconductor.The sample A with nominal composi-tion of BiSrCaCuOwas synthesized bySolid state reaction.It was sintered in airat 1153K for 24h,followed by annealingat 773K for 24h and furnace-cooling.The sample B with a nominal compositionof BiPbSrCaCuOwas prepared bymixing PbO with the powder ofBiSrCaCuOwhich had been prefired at1113K for 24h,pressing,sintering at
基金State Natural Science Foundation of China (10032040 and 49874013).
文摘Center for Analysis and Prediction, China Seismological Bureau, Beijing 100036, China 2) Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
文摘Superior characteristics of Al Ga N-channel metal-insulator-semiconductor(MIS) high electron mobility transistors(HEMTs) at high temperatures are demonstrated in detail. The temperature coefficient of the maximum saturation drain current for the Al GaN-channel MIS HEMT can be reduced by 50% compared with the Ga N-channel HEMT. Moreover, benefiting from the better suppression of gate current and reduced leakage current in the buffer layer, the Al Ga N-channel MIS HEMT demonstrates an average breakdown electric field of 1.83 MV/cm at25℃ and 1.06 MV/cm at 300℃, which is almost 2 times and 3 times respectively larger than that of the reference Ga N-channel HEMT. Pulsed mode analyses suggest that the proposed device suffers from smaller current collapse when the temperature reaches as high as 300℃.
文摘Beef tallow is a byproduct of the slaughter industry. As a consequence, meat producer countries obtain a high amount of this low value-added fatty material. In Uruguay, it is generally used for food purposes or for biodiesel production. Globally, around half of the beef tallow produced worldwide is used for the manufacturing of food. To the best of our knowledge there are no published studies concerning the stability of beef tallow when exposed to high temperatures. The aim of this work was to study some Uruguayan beef tallow brands and compare its stability with that of the most frequently used frying oils in Uruguay (sunflower high oleic, rice bran and sunflower oil) to assess its suitability for frying. Stability was assessed by the oxidative stability index and thermoxidation in absence of food. Even though beef tallow's inherent stability indicated that it should be highly stable to oxidation, the majority of the analyzed samples exhibited a similar or lower stability than sunflower high oleic. This might be explained by a different composition in pro-oxidants and/or antioxidants between the beef tallows and the oils. According to the thermoxidation assays, which are carried out in similar conditions to those of a frying process, three of the beef tallow samples, sunflower high oleic and rice bran oil would be similarly suitable for frying, while sunflower oil and the other two samples of beef tallow evidenced a lower thermoxidative stability, thus not being recommended for this use.
文摘We analyze the line data from solar flares to present evidence for the emission spectrum of the recently discussed electron-proton pairs at high temperatures. We also point out that since the pairing phenomenon provides an additional source for these lines—the conventional source being the highly ionized high-Z atoms already existing in the solar atmosphere, we have a plausible explanation of the FIP effect.
基金The authors would like to acknowledge the financial support from the National Key Basic Research Program(973 Program),Project(2013CB632205).
文摘For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical properties of extruded Mg-Gd-Y Magnesium alloy at ambient temperature(300 K),200℃(473 K)and 300℃(573 K)temperature.The samples after compression were analyzed by scanning electron microscope(SEM)and metallographic microscope.Dynamic mechanical properties,crack performance and plastic deformation mechanism of extruded Mg-Gd-Y Magnesium alloy along the extrusion direction(ED)were discussed.The results show that,extruded Mg-Gd-Y Magnesium alloy has the largest dynamic compressive strength which is 535 MPa at ambient temperature(300 K)and strain rate of 2826 s^(−1).When temperature increases,dynamic compressive strength decreases,while ductility increases.The dynamic compression fracture mechanism of extruded Mg-Gd-Y Magnesium alloy is multi-crack propagation and intergranular quasi-cleavage fracture at both ambient temperature and high temperature.The dynamic compressive deformation mechanism of extruded Mg-Gd-Y Magnesium alloy is a combination of twinning,slipping and dynamic recrystallization at both ambient temperature and high temperature.
基金Projects 2005CB217701-03 supported by the National Basic Research Program of China2005DFA60220 by the Ministry of Science and Technology of China
文摘Transformation of mineral matter is important for coal utilization at high temperatures.This is especially true for blended coal.XRD and FTIR were employed together to study the transformation of mineral matter at high temperature in blended coals.It was found that the concentration of catalytic minerals, namely iron oxides, increases with an increasing ratio of Shenfu coal, which could improve coal gasification.The transformation characteristics of the minerals in blended coals are not exactly predictable from the blend ratio.This was proved by comparing the iron oxide content to the blending ratio.The results from FTIR are comparable with those from XRD.FTIR is an effective method for examining variation in mineral matter.
基金Projects(50438020 50578162) supported by the National Natural Sceince Foundation of China
文摘Based on reanalyzing test results of uniaxial compressive behavior of concrete at constant high temperatures in China, with the compressive cube strength of concrete from 20 to 80 MPa, unified formulas for uniaxial compressive strength, elastic modulus, strain at peak uniaxial compression and mathematical expression for unaxial compressive stress-strain relations for the concrete at constant high temperatures were studied. Furthermore, the axial stress-axial strain relations between laterally confined concrete under axial compression and multiaxial stress-strain relations for steel at constant high temperatures were studied. Finally, based on continuum mechanics, the mechanics model for concentric cylinders of circular steel tube with concrete core of entire section loaded at constant high temperatures was established. Applying elasto-plastic analysis method, a FORTRAN program was developed, and the concrete-filled circular steel tubular (CFST) stub colunms at constant high temperatures were analyzed. The analysis results are in agreement with the experiment ones from references.
基金Item Sponsored by National Natural Science Foundation of China (NSFC10402037) Theoretical Research Fund of SouthwestJiaotong University (2005XJB23)
文摘The uniaxial time-dependent strain cyclic behaviors and ratcheting of SS304 stainless steel were studied at high temperatures (350 ℃ and 700 ℃). The effects of straining and stressing rates, holding time at the peak and/or valley of each cycle in addition to ambient temperature on the cyclic softening/hardening behavior and ratcheting of the material were discussed. It can be seen from experimental results that the material presents remarkable time dependence at 700 ℃, and the ratcheting strain depends greatly on the stressing rate, holding time and ambient temperature. Some significant conclusions are obtained, which are useful to build a constitutive model describiog the time-dependent cyclic deformation of the material.
基金Project 50574037 supported by the National Natural Science Foundation of China
文摘The elemental composition,heat expansibility and breaking characteristics of limestone have been investigated with the use of an energy spectrum analyzer,a SEM,an optical microscope and an experimental heat swelling power system.The results show that 1) the heat expansibility of limestone has anisotropic properties,and 2) the heat expansion rate in the direction perpendicular to stratification is eight times greater than the rate parallel to stratification.The changes in heat expansibility as a function of heating temperature is essentially coincident with that of swelling and breaking of mineral particles and the appearance of cracks,indicating that the reason for causing the heat expansion of rock are the structural changes of limestone caused by thermal stress,crystal transformation and mineral decomposition.The apparent destruction of limestone under high temperatures is largely characterized by rock stratification breaks.When the limestone is heated beyond a certain limit,the rock destroys into crazed cracks.
基金Project supported by the Major Program for Basic Research of National Security, China (Grant No 5134202-04)the National Natural Science Foundation of China (Grant No 10574096)the Natural Science Foundation of the Bureau of Education of Guizhou Province, China (Grant No 2006204)
文摘The total internal partition sums were calculated in the product approximation at temperatures up to 5000 K for the asymptotic asymmetric-top HO2 molecule. The calculations of the rotational partition function and the vibrational partition function were carried out with the rigid-top model and in the harmonic oscillator approximation, respectively. Our values of the total internal partition sums are consistent with the data of HITRAN database with -0.14% at 296 K. Using the calculated partition functions, we have calculated the line intensities of υ2 band of HO2 at several high temperatures. The results showed that the calculated line intensities are in very good agreement with those of HITRAN database at temperatures up to 3000 K, which provides a strong support for the calculations of partition functions and line intensities at high temperatures. Then we have extended the calculation to higher temperatures. The simulated spectra of υ2 band of the asymptotic asymmetric-top HO2 molecule at 4000 and 5000 K are also obtained.