Recently,there is an increasing requirement for controlling linear motion up to a few hundred of millimeter strokes in the area of the liquid crystal display(LCD) production equipment.The requirements of the motion sy...Recently,there is an increasing requirement for controlling linear motion up to a few hundred of millimeter strokes in the area of the liquid crystal display(LCD) production equipment.The requirements of the motion system for LCD production equipment are high acceleration and high velocity with positioning accuracy.To satisfy these requirements,it has to be designed with the high-thrust force and low velocity ripple.In this work, high-thrust and double-sided linear synchronous motor (LSM)module is proposed and the developed high-thrust and double-sided LSM module is verified by performance test.展开更多
基金supported by the ministry of education,science technology [MEST] and the ministry of knowledge economy [MKE] through the fostering project of the industrial-academic cooperation centered university.
文摘Recently,there is an increasing requirement for controlling linear motion up to a few hundred of millimeter strokes in the area of the liquid crystal display(LCD) production equipment.The requirements of the motion system for LCD production equipment are high acceleration and high velocity with positioning accuracy.To satisfy these requirements,it has to be designed with the high-thrust force and low velocity ripple.In this work, high-thrust and double-sided linear synchronous motor (LSM)module is proposed and the developed high-thrust and double-sided LSM module is verified by performance test.
文摘为使大推力航空并联混合动力推进系统在考虑节能减排效益的同时,充分挖掘涡轮电气化后部件的性能提升潜力,本文依托某并联混合动力齿轮传动涡扇发动机(Parallel hybrid geared turbofan,PH-GTF)推进系统概念模型,在“发动机主燃油闭环+电动力系统转矩补偿”控制结构下,针对典型飞行航程所包括的低功率工况段、起飞爬升段、巡航段、下降段,分别设计了相应的能量管理策略,并基于不同飞行工况在全航程内进行调度。通过典型飞行航线下的数字仿真及硬件在环(Hardware in the loop,HIL)仿真验证,结果表明,相较于未采用混合动力改型的基线GTF发动机,应用所设计综合全航程能量管理策略的PH-GTF推进系统,该航线下总燃油消耗量和NO_(x)排放量分别降低5.70%和10.72%,其中在低功率工况下,可变放气活门(Variable bleed valve,VBV)可以减小54.35%的排气量;在航空节能减排所重点关注的等高等速巡航段,耗油量和NO_(x)排放量分别降低18.93%和30.19%。所设计综合全航程能量管理策略兼顾了部件性能提升和节能减排效益,符合未来绿色航空推进系统的设计理念。